[1] LILES D R, REED W H. A semi-implicit method for two-phase fluid dynamics[J]. J Comput Phys, 1978, 26(3):390-407. [2] MAHAFFY H. A stability-enhancing two-step method for fluid flow calculation[J]. J Comput Phys, 1982, 46(3):329-341. [3] MASELLA M J, FAILLE I, GALLOUET T. On an approximate Godunov scheme[J]. Int J Comput Fluid Dyn, 1999, 12(2):133-149. [4] SHIEH A S, KRISHNAMURTHY R, RANSOM V H. Stability, accuracy and convergence of the numerical methods in RELAP5/MOD3[J]. Nucl Sci Eng, 1994, 116(4):227-244. [5] BENDIKSEN K. H, BRANDT I, FUCHS P, et al. The dynamic two-fluid model OLGA:Theory and application[J]. SPE Prodution Engineering, 1991, 6(2):171-180. [6] PAUCHON C L, DHULESIA H. TACITE. A transient tool for multiphase pipeline and well simulation[C]//The SPE Annual Technical Conference and Exhibition, New Orleans, USA, 1994:28545. [7] BLACK P S, DANIELS L C, HOYLE N C, et al. Studying transient multiphase flow using the pipeline analysis code (PLAC)[J]. Journal of Energy Resources Technology, 1990, 112:25-29. [8] ROMATE J E. An approximate Riemann solver for a two-phase flow model with numerically given slip relation[J]. Comput Fluids, 1998, 27(4):455-477. [9] TOUMI I, KUMBARO A. An approximate linearized Riemann solver for a two-fluid model[J]. J Comput Phys, 1996, 124(2):286-300. [10] TRAPP J A, RIEMKE R A. A nearly-implicit hydrodynamic numerical scheme for two-phase flows[J]. J Comput Phys, 1986, 66(1):62-82. [11] FJELDE K K, KARLSEN K H. High-resolution hybrid primitive-conservative upwind schemes for the drift flux model[J]. Comput Fluids, 2002, 31(3):335-367. [12] COQUEL F, AMINE K.E, GODLEWSKI E, et al. A numerical method using upwind schemes for the resolution of two-phase flows[J]. J Comput Phys, 1997, 136(2):272-288. [13] PAILLÈRE H, CORRE C, CASCALES J R. On the extension of the AUSM+ scheme to compressible two-fluid models[J]. omput Fluids, 2003, 32(6):891-916. [14] EVJE S, FJELDE K K. On a rough AUSM scheme for a one-dimensional two-phase model[J]. Comput Fluids, 2003, 32(10):1497-1530. [15] BESTION D. The physical closure laws in the CATHARE code[J]. Nucl Eng Des, 1990, 124(3):229-244. [16] CORTES J, DEBUSSCHE A, TOUMI I, et al. A density perturbation method to study the eigenstructure of two-phase flow equation systems[J]. J Comput Phys, 1998, 147(2):463-484. [17] GARCÍA-CASCALES J R, PAILLÈRE H. Application of AUSM schemes to multi-dimensional compressible two-phase flow problems[J]. Nucl Eng Des, 2006, 236(12):1225-1239. [18] SHEKARI Y, HAJIDAVALLOO E. Application of Osher and PRICE-C schemes to solve compressible isothermal two-fluid models of two-phase flow[J]. Comput Fluids, 2013, 86(7):363-379. [19] 陶文铨. 计算传热学的近代进展[M]. 北京:科学出版社, 2001. [20] RANSOM V H. Faucet flow[M]//Numerical benchmark tests Volume 3 of multiphase science and technology, USA:Springer, 1987. [21] YEOM G S, CHANG K S. A codified HLLC-type Riemann solver for the compressible six-equation two-fluid model[J]. Comput Fluids, 2013, 76(10):86-104. [22] MUNKEJORD S T. Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation[J]. Comput Fluids, 2007, 36(6):1061-1080. [23] CHUNG M S, LEE S J. A modified semi-implicit method for a hyperbolic two-fluid model[J]. Applied Numerical Mathematics, 2009, 59(10):2475-2488. |