[1] SAVRASOV S, KOTLIAR G. Ground state theory of δ-Pu[J]. Phys Rev Lett, 2000, 84:3670. [2] PETIT L, SVANE A, SZOTEK Z, et al. First-principles calculations of PuO(2±X)[J]. Science, 2003, 301:498. [3] ZHU J X, ALBERS R C, HAULE K, et al. Site-selective electronic correlation in α-plutonium metal[J]. Nat Comm, 2013, 4:2644. [4] MOORE K T, LAAN G V D. Nature of the 5f states in actinide metals[J]. Rev Mod Phys, 2009, 81:235. [5] HASCHKE J M, ALLEN T H, MORALES L A. Surface and corrosion chemistry of plutonium[J]. Los Alamos Sci, 2000, 26, 252. [6] HECKER S S, MARTZ J C. Aging of plutonium and its alloys[J]. Los Alamos Sci, 2000, 26:238. [7] JOMARD G, AMADON B, BOTTIN F, et al. Structural, thermodynamic, and electronic properties of plutonium oxides from first principles[J]. Phys Rev B, 2008, 78:075125. [8] FLORES H G G, ROUSSEL P, MOORE D P, et al. Characterization and stability of thin oxide films on plutonium surfaces[J]. Surf Sci, 2011, 605:314. [9] AO B, LU H, QIU R, et al. First-principles energetics of some nonmetallic impurity atoms in plutonium dioxide[J]. J Phys Chem C, 2015, 119:14879. [10] AO B, QIU R, LU H, et al. New insights into the formation of hyperstoichiometric plutonium oxides[J]. J Phys Chem C, 2015, 119:101. [11] MCGILLIVRARY G W, KNOWLES J P, FINDLAY I M, et al. The plutonium/hydrogen reaction:The pressure dependence of reaction initiation time and nucleation rate controlled by a plutonium dioxide over-layer[J]. J Nucl Mater, 2011, 412:35. [12] KNOWLES P J, McGILLIVRAY G, WILLETS A, et al. Evaluation of the initiation times for the plutonium hydrogen reaction based upon a diffusion barrier model[R]. Plutonium Futures, Las Vegas, USA, 2014. [13] BRIERLEY M, KNOWLES J P, SHERRY A, et al. The anisotropic growth morphology and microstructure of plutonium hydride reaction sites[J]. J Nucl Mater, 2016, 469:145. [14] HASCHKE J M. The chemistry of the actinide and transactinide elements[M]//Springer, 2006, 5:3199. [15] HASCHKE J M, ALLEN T H. Plutonium hydride, sesquioxide and monoxide monohydride:Pyrophoricity and catalysis of plutonium corrosion[J]. J Alloys Compd, 2001, 320:58. [16] DINH L N, HASCHKE J M, SAW C K, et al. Pu2O3 and the plutonium hydriding process[J]. J Nucl Mater, 2011, 408:171. [17] SAW C K, HASCHKE J M, ALLEN P G, et al. Hydrogen corrosion of plutonium:Evidence for fast grain-boundary reaction and slower intragrain reaction[J]. J Nucl Mater, 2012, 429:128. [18] CHEN P, DONG P, BAI B, et al. Simulation of water adsorption on PuO2 surface[J]. Chinese Journal of Computational Physics, 2009, 26(5):786-790. [19] ZHANG Q, LIU H, LI Q, et al. Path intergral Monte Carlo calculations of equation of state of hydrogen[J]. Chinese Journal of Computational Physics, 2019, 36(4):379-385. [20] SUN B, LIU H, SONG H, et al. The different roles of Pu-oxide overlayers in the hydrogenation of Pu-metal:An ab initio molecular dynamics study based on van der Waals density functional (vdW-DF)+U[J]. J Chem Phys, 2014, 140:164709. [21] YU H L, LI G, LI H B, et al. Adsorption and dissociation of H2 on PuO2 (110) surface:A density functional theory study[J]. J Alloys Compd, 2016, 654:567. [22] YU H L, TANG T, ZHENG S T, et al. A theoretical study of hydrogen atoms adsorption and diffusion on PuO2 (110) surface[J]. J Alloys Compd, 2016, 666:287. [23] ZHANG L, SUN B, et al. First-principles study of the hydrogen resistence mechanism of PuO2[J]. ACS Omega, 2020, 5:7211. [24] ZHANG L, SUN B, et al. First-principles study of hydrogen behavior in α-Pu2O3[J]. Comp Mater Sci, 2020, 179:109688. [25] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54, 11169-11186. [26] PREDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77:3865. [27] BLOCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50:17953. [28] SUN B, ZHANG P, ZHAO X G, et al. First-principles local density approximation+U and generalized gradient approximation+U study of plutonium oxides[J]. J Chem Phys, 2008, 128:084705. [29] SUN B, LIU H, SONG H, et al. First-principles study of surface properties of PuO2:Effects of thickness and O-vacancy on surface stability and chemical activity[J]. J Nucl Mater, 2012, 426:139. [30] SUN B, LIU H, SONG H, et al. The environmental dependence of redox energetics of PuO2 and α-Pu2O3:A quantitative solution from DFT+U[J]. Phys Lett A, 2012, 376:2672. [31] LI D, GAO Y, ZHU Y, et al. Density functional theory calculations of Ga doped δ-Pu[J]. Chinese Journal of Computational Physics, 2018, 35(4):487-493. [32] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study[J]. Phys Rev B, 1998, 57, 1505-1509. [33] PETERSON D E, KASSNER M E. The Ga-Pu (gallium-plutonium) system[J]. Bulletin of Alloy Phase Diagrams, 1988, 9:261. [34] GRIMME S, SEMIEMPORICAL. GGA-type density functional constructed with a long-range dispersion correction[J]. J Comp Chem, 2006, 27:1787. [35] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The J Chem Phys, 2010, 132:154104. [36] WELLINGTON J P W, KERRIDGE A, AUSTIN J, et al. Electronic structure of bulk AnO2 (An=U, Np, Pu) and water adsorption on the (111) and (110) surfaces of UO2 and PuO2 from hybrid density functional theory within the periodic electrostatic embedded cluster method[J]. J Nucl Mater, 2016, 482:124. [37] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13:5188. [38] CHIKALLA T, MCNEILLY C, SKAVDAHL R. The plutonium-oxygen system[J]. J Nucl Mater, 1964, 12:131. [39] CHADWICK M B. Next generation evaluated nuclear data library for nuclear science and technology[DB]//Nuclear Data Sheets 2006, 107:2931. [40] HENKELMAN G, JONSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J Chem Phys, 2000, 113:9978. [41] HENKELMAN G, UBERUAGA B P, JONSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000, 113:9901. [42] REUTER K, SCHEFFLER M. Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure[J]. Phys Rev B, 2001, 65:035406. [43] FINNIS M W. Accessing the excess:An atomistic approach to excesses at planar defects and dislocations in ordered compounds[J]. Phys Status Solidi A, 1998, 166:397. [44] LIDE D R. Handbook of chemistry and physics[M]. Boca Raton, FL, USA:CRC Press LLC, 2005. |