[1] 杨显俊, 李璐璐. 磁惯性约束聚变:通向聚变能源的新途径[J]. 中国科学:物理学力学天文学, 2016, 46(11):115202.
[2] WURDEN G A, HSU S C, INTRATOR T P, et al. Magneto-inertial fusion[J].
Journal of Fusion Energy, 2015, 35(1):69-77.
[3] INTRATOR T P, SIEMON R E, SIECK P E. Adiabatic model and design of a
translating field reversed configuration[J]. Physics of Plasmas, 2008,
15(4):042505.
[4] LINDEMUTH I R, KIRKPATRICK R C. Parameter space for magnetized fuel targets
in inertial confinement fusion[J]. Nuclear Fusion, 1983, 23(3):263-284.
[5] WURDEN G A, SCHOENBERG K F, SIEMON R E, et al. Magnetized target fusion:A
burning FRC plasma in an imploded metal can[J]. Journal Plasma Fusion Research,
1999, 2:238-241.
[6] GRABOWSKI C, DEGNAN J H, AMDAHL D J, et al. Addressing short trapped-flux
lifetime in high-density field-reversed configuration plasmas in FRCHX[J]. IEEE
Transactions Plasma Science, 2014, 42(5):1179-1188.
[7] GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental demonstration of
fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical
Review Letters, 2014, 113(15):155003.
[8] SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical
liner implosions of laser preheated fuel magnetized with an axial field[J].
Physics of Plasmas, 2010, 17(5):056303.
[9] BINDERBAUER M W, GUO H Y, TUSZEWSKI M, et al. Dynamic formation of a hot
field reversed configuration with improved confinement by supersonic merging of
two colliding high-β compact toroids[J]. Physical Review Letters, 2010,
105(4):045003.
[10] BINDERBAUER M W, TAJIMA T, STEINHAUER L C, et al. A high performance
field-reversed configuration[J]. Physics of Plasmas, 2015, 22(22):056110.
[11] THIO Y C F, PANARELLA E, KNUPP C E, et al. Magnetized target fusion in a
spheroidal geometry with standoff drivers[C]. The 2nd Conference on Current
Trends in International Fusion Research. 1999:113.
[12] CASSIBRY J T, STANIC M, HSU S C, et al. Tendency of spherically imploding
plasma liners formed by merging plasma jets to evolve toward spherical
symmetry[J]. Physics of Plasmas, 2012, 19(5):052702.
[13] RAYLEIGH L. Investigation of the character of the equilibrium of an
incompressible heavy fluid of variable density[J]. Proceedings of the London
Mathematical Society, s1-14(1):170-177.
[14] TAYLOR G. The instability of liquid surfaces when accelerated in a direction
perpendicular to their planes I[J]. Proceedings of the Royal Society of London
A:Mathematical, Physical and Engineering Sciences, 1950, 201(1065):192-196.
[15] LEWIS D J. The instability of liquid surfaces when accelerated in a
direction perpendicular to their planes II[J]. Proceedings of the Royal Society
of London A:Mathematical, Physical and Engineering Sciences, 1950,
202(1068):81-96.
[16] ZHANG P, LAU Y Y, RITTERSDORF I M, et al. Effect of magnetic shear on
magneto-Rayleigh-Taylor instability[J]. Physics of Plasmas, 2012,
19(2):161-164.
[17] CHANDRASEKHAR S. Hydrodynamic and hydromagnetic stability[M].
Oxford:Clarendon Press, 1961:429.
[18] HARRIS E G. Rayleigh-Taylor instabilities of a collapsing cylindrical
shell in a magnetic field[J]. Physics of Fluids, 1962, 5(9):1057.
[19] ZHANG W, WU Z, LI D. Effect of shear flow and magnetic field on the
Rayleigh-Taylor instability[J]. Physics of Plasmas, 2005, 12(4):042106.
[20] YANG B L, WANG L F, YE W H, et al. Magnetic field gradient effects on Rayleigh-Taylor
instability with continuous magnetic field and density profiles[J]. Physics of
Plasmas, 2011, 18(7):72111.
[21] LAU Y Y, ZIER J C, RITTERSDORF I M, et al. Anisotropy and feedthrough in
magneto-Rayleigh-Taylor instability[J]. Physical Review E, 2011, 83(6 Pt
2):066405.
[22] WEIS M R, ZHANG P, LAU Y Y, et al. Coupling of sausage, kink, and
magneto-Rayleigh-Taylor instabilities in a cylindrical liner[J]. Physics of
Plasmas, 2015, 22(3):032706.
[23] JUN B I, NORMAN M L, STONE J M. A numerical study of Rayleigh-Taylor
instability in magnetic fluids[J]. Astrophysical Journal, 1995,
453(1Pt1):332-349.
[24] SINARS D B, SLUTZ S A, HERRMANN M C, et al. Measurements of
magneto-Rayleigh-Taylor instability growth during the implosion of initially
solid metal liners[J]. Physics of Plasmas, 2011, 18(5):056301.
[25] LI Y, LUO X. Numerical study of shock interactions with rectangular
density interface in magnetohydrodynamics[J]. Chinese Journal of Computational
Physcis, 2014, 31(6):659-667.
[26] JIANG G S, WU C C. A High-order WENO finite difference scheme for the
equations of ideal magnetohydrodynamics[J]. Journal of Computational Physics,
1999, 150(2):561-594.
[27] YANG Y. A magnetic field divergence cleaning method in MHD numerical
simulations[J]. Chinese Journal of Computational Physics, 2018, 35(4):437-442.
[28] BRACKBILL J U, BARNES D C. The effect of nonzero ▽·B on the numerical solution of the magnetohydrodynamic equations[J].
Journal of Computational Physics, 1980, 35:426-430.
[29] 谢华生.计算等离子体物理导论[M].北京:科学出版社, 2018:108-109.
[30] YAO M, SHANG W, ZHANG Y, et al. Numerical analysis of Kelvin-Helmholtz in
inclined walls[J]. Chinese Journal of Computational Physics, 2019,
36(4):403-412.
[31] OFER D, ALON U, SHVARTS D, et al. Modal model for the nonlinear multimode
Rayleigh-Taylor instability[J]. Physics of Plasmas, 1996, 3(8):3073-3090.
[32] WANG X G, SUN S K, XIAO D L, et al. Numerical study on
magneto-Rayleigh-Taylor instabilities for liner implosions on the primary test
stand facility[J]. Chinese Physics B, 2019, 28(3):035201.
|