计算物理 ›› 2015, Vol. 32 ›› Issue (6): 709-714.

• 论文 • 上一篇    下一篇

基于Lempel-Ziv复杂度和经验模态分解的癫痫脑电信号的检测方法

夏德玲1, 孟庆芳1, 牛贺功2, 魏英达1, 刘海红1   

  1. 1. 济南大学信息科学与工程学院, 山东省智能计算网络重点实验室, 济南 250022;
    2. 青岛理工大学汽车与交通学院, 青岛 266520
  • 收稿日期:2014-11-24 修回日期:2015-02-07 出版日期:2015-11-25 发布日期:2015-11-25
  • 作者简介:夏德玲(1989-),女,硕士,主要从事生物时间序列分析、信智能信息处理研究,E-mail:xiadeling@yeah.net
  • 基金资助:
    国家自然科学基金(61201428,61070130)资助项目

Classification of Epilepsy Based on Lempel-Ziv Complexity and EMD

XIA Deling1, MENG Qingfang1, NIU Hegong2, WEI Yingda1, LIU Haihong1   

  1. 1. School of Information Science and Engineering, University of Jinan, Shandong Provincial Key laboratory of Network Based Intelligent Computing, Jinan 250022, China;
    2. Qingdao Technological University, College of Automobile and Transportation, Qingdao 266520, China
  • Received:2014-11-24 Revised:2015-02-07 Online:2015-11-25 Published:2015-11-25

摘要: 癫痫脑电信号是非平稳、非线性的,根据此特性我们提出一个基于Lempel-Ziv复杂度和经验模态分解(EMD)的癫痫脑电信号的检测方法,首先将癫痫脑电信号用EMD分解,再分别计算每阶固有模态函数(IMF)的复杂度,最后将得到的复杂度作为特征进行检测.实验用波恩数据库来评估提出的方法.结果表明,该方法检测准确率可达到95.25%,具有准确率高、适应性强等优点.

关键词: Lempel-Ziv复杂度, 经验模态分解, 癫痫脑电信号, 准确率

Abstract: Taking non-stationary and nonlinearity of epilepsy signals into consideration, we proposed a method for detection of epilepsy, based on Lempel-Ziv (LZ) complexity and empirical mode decomposition (EMD). EMD first decomposed epilepsy signals into a set of intrinsic mode functions (IMFs). Then calculated complexity of each IMF. Bonn dataset was utilized for evaluating the method. Experimental results showed that the highest accuracy could be achieved to 95. 25%. It has advantages of high accuracy, strong adaptability and so on.

Key words: Lempel-Ziv complexity, empirical mode decomposition(EMD), epilepsy signals, accuracy

中图分类号: