计算物理 ›› 2006, Vol. 23 ›› Issue (5): 599-603.

• 论文 • 上一篇    下一篇

N体问题的几种数值算法比较

杨远玲1, 聂清香1, 吴晓梅2, 徐顺福1   

  1. 1. 山东师范大学物理与电子科学学院, 山东 济南 250014;
    2. 泰山学院, 山东 泰安 271021
  • 收稿日期:2005-05-24 修回日期:2005-12-16 出版日期:2006-09-25 发布日期:2006-09-25
  • 作者简介:杨远玲(1979-),女,山东省青州,研究生,从事天体物理研究,山东省济南市文化东路88号250014.

On Algorithms for N-body Problems

YANG Yuan-ling1, NIE Qing-xiang1, WU Xiao-mei2, XU Shun-fu1   

  1. 1. College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
    2. Taishan University, Taian 271021, China
  • Received:2005-05-24 Revised:2005-12-16 Online:2006-09-25 Published:2006-09-25

摘要: N体问题的数值积分中的Runge-Kutta-Fehlberg法(简称RKF法)、辛算法和厄米算法在N体问题中应用时引起的能量误差、半长径和偏心率的变化进行比较.结果发现:RKF法精度最高,但长时间内有误差积累;辛算法无人工耗散,能较好保持能量误差的稳定性;厄米算法虽然误差较大,但构造简单,耗机时较少.

关键词: Hamilton系统, RKF法, 辛算法, 厄米算法, 二体问题, N体问题

Abstract: The Runge-Kutta-Fehlberg algorithm(RKF),the symplectic algorithm and the Hermite algorithm for N-body problems are studied with energies errors and semimajor axis and eccentricity.It shows that the precision of RKF is the highest,but its error increases with computation time.The symplectic algorithm has no artificial dissipation,and keeps stability of the energy error.The structure of the Hermite algorithm is simple and its computation time is short,but its error is greater than that of the other two.

Key words: Hamilton system, Runge-Kutta-Fehlberg algorithm, symplectic algorithm, Hermite algorithm, two-body problem, N-body problem

中图分类号: