计算物理 ›› 2004, Vol. 21 ›› Issue (2): 106-110.

• 研究论文 • 上一篇    下一篇

高阶Schrödinger方程的高精度辛格式

曾文平   

  1. 华侨大学数学系, 福建 泉州 362011
  • 收稿日期:2003-01-27 修回日期:2003-08-18 出版日期:2004-03-25 发布日期:2004-03-25
  • 作者简介:曾文平(11940-),男,汉族.福建惠安,教授,主要从事计算歙学与计算物理方面的研究.
  • 基金资助:
    国务院侨办自然科学基金(02QZR07)资助项目

Symplectic Scheme with High Order Accuracy for High Order Schrödinger Type Equation

ZENG Wen-ping   

  1. Department of Mathematics, Huaqiao University, Quanzhou 362011, China
  • Received:2003-01-27 Revised:2003-08-18 Online:2004-03-25 Published:2004-03-25

摘要: 提出由第三类生成函数法构造高阶Schrödinger方程(əu)/(ət)=1(-1)m2mu)/(əx2m)的高精度辛格式.首先,给出它的典则Hamilton方程组;然后,成功地克服了本质上是困难的高阶变分导数的计算,并利用第三类生成函数法得到在时间方向具有任意阶精度的半离散方程,进而得到原始方程相关的修正方程的离散形式,最后得到各种精度的辛格式.数值结果表明该格式是有效的,具有高精度及良好的长时间数值行为等特性.

关键词: 变分, 高精度辛格式, 高阶Schrö, dinger方程

Abstract: A symplectic schemes with high order accuracy is proposed for solving the high order schrödinger type equation (əu)/(ət)=1(-1)m2mu)/(əx2m) via the third type of generating function method. At first, the equation is written into the canonical Hamilton system; secondly, overcoming successfully the essential difficulty on the calculus of high order variations derivative, we get the semi-discretization with arbitrary order of accuracy in time direction for the PDEs by the third type of generating function method. Furthermore the discretization of the related modified equation of original equation are obtained. Finally, arbitrary order accuracy symplectic scheme is obtained. Numerical results are also presented to show the effectiveness of the scheme and its high order accuracy and properties of excellent long-time numerical behavior.

Key words: variation, high order accuracy symplectic scheme, high order schrödinger type equation

中图分类号: