计算物理 ›› 2014, Vol. 31 ›› Issue (2): 155-164.

• 论文 • 上一篇    下一篇

求解双曲型守恒律方程的一类自适应多分辨方法

唐玲艳1, 宋松和2   

  1. 国防科技大学理学院数学与系统科学系, 湖南 长沙 410073;
    2. 空气动力学国家重点实验室, 四川 绵阳 621000
  • 收稿日期:2012-12-25 修回日期:2013-09-29 出版日期:2014-03-25 发布日期:2014-03-25
  • 作者简介:唐玲艳(1980-),女,博士,副教授,研究方向:偏微分方程数值解及其应用,E-mail:tanglingyan@aliyun.com
  • 基金资助:
    国家自然科学基金(11001270,91130013和61171018);空气动力学国家重点实验室开放课题资助项目

An Adaptive Multiresolution Scheme for Hyperbolic Conservation Laws

TANG Lingyan1, SONG Songhe2   

  1. 1. Department of Mathematics and System Science, Science School, National University of Defence Technology, Changsha, Hunan 410073, China;
    2. State Key Laboratory of Aerodynamic, Mianyang, Sichuan 621000, China
  • Received:2012-12-25 Revised:2013-09-29 Online:2014-03-25 Published:2014-03-25

摘要: 针对双曲型守恒律方程问题,发展一种有效的自适应多分辨分析方法.通过对嵌套网格上的数值解构造离散多分辨分析,建立小波系数与多层嵌套网格点之间的对应关系.对于小波系数较大的网格点采用高精度WENO格式计算,其余区域则直接采用多项式插值.数值试验表明,该方法在保持原规则网格方法的精度和分辨率的同时,显著地减少计算的CPU时间.

关键词: 离散多分辨分析, 自适应, 双曲型守恒律, WENO方法

Abstract: An efficient adaptive multiresolution finite difference scheme is developed for hyperbolic conservation laws. Based on discrete multiresolution analysis of numerical solution on a nested grid structure,the scheme builds up an one-to-one relationship between wavelet coefficients with multiple nested grid point. At grid points where magnitude of wavelet coefficients are great,high-order WENO scheme is used for time evolution. While in the rest computational region,we use polynomial interpolation directly. Numerical experiments show that the method can reduce CPU time significantly,while maintaining accuracy and resolution of original regular grid method.

Key words: discrete multiresolution analysis, adaptive, hyperbolic conservation laws, WENO scheme

中图分类号: