计算物理 ›› 2002, Vol. 19 ›› Issue (2): 149-154.

• 论文 • 上一篇    下一篇

基于对偶混合变分原理的Signorini问题的数值模拟

王光辉1, 王烈衡2   

  1. 1. 清华大学计算机科学与技术系, 北京 100084;
    2. 中科院计算数学与科学工程计算研究所, 科学与工程计算国家重点试验室, 北京 100080
  • 收稿日期:2000-07-24 修回日期:2001-03-05 出版日期:2002-03-25 发布日期:2002-03-25
  • 作者简介:王光辉(1962-),男,湖楠益阳,博士,从事应用数值分析研究.
  • 基金资助:
    国家自然科学基金(19672064)资助项目

NUMERICAL MODELING OF SIGNORINI PROBLEM BASED ON DUAL MIXED VARIATIONAL PRINCIPLE

WANG Guang-hui1, WANG Lie-heng2   

  1. 1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P R China;
    2. Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, State Key Labora
  • Received:2000-07-24 Revised:2001-03-05 Online:2002-03-25 Published:2002-03-25

摘要: 基于Signorini问题的对偶混合变分形式,提出了一种非协调有限元逼近格式,证明了离散的B-B条件,获得了Raviart-Thomas(k=0)有限元逼近的误差界O(h3/4),并且Uzawa型算法对协调与非协调有限元逼近格式进行了数值求解.根据数值结果的分析和比较,表明应用非协调有限元逼近格式求解更有效.

关键词: Signorini问题, 对偶混合变分形式, Raviart-Thomas元, 非协调有限元, Uzawa算法

Abstract: Based on the dual mixed variational formulation for the Signorini problem,a nonconforming finite element method is proposed.The discrete B-B condition is confirmed and the error estimation O(h3/4)for Raviart-Thomas(k=0)finite element is achieved.A Uzawa type algorithm is used for solving the Signorini problem which is discretized by conforming finite element method as well as nonconforming finite element method.The accuracy and efficiency of both are demonstrated by numerical results.By contrast to the conforming one,nonconforming method is more cost-effective.

Key words: Signorini problem, dual mixed variational formulation, Raviart-Thomas element, nonconforming finite element, Uzawa algorithm

中图分类号: