计算物理 ›› 2002, Vol. 19 ›› Issue (4): 349-356.

• 论文 • 上一篇    下一篇

耗散对孤波与局地地形相互作用的影响

Meng Lu1, 吕克利2   

  1. 1. 美国纽约市立大学市立学院物理系, 纽约 100031;
    2. 南京大学大气科学系, 江苏 南京 210093
  • 收稿日期:1999-12-30 修回日期:2001-04-09 出版日期:2002-07-25 发布日期:2002-07-25
  • 作者简介:Meng Ln(1971-), male,PhD.

INFLUENCES OF DISSIPATION ON INTERACTION OF SOLITARY WAVE WITH LOCALIZED TOPOGRAPHY

Meng Lu1, LÜ Ke-li2   

  1. 1. Department of Physics, The City College of The City University of New York, New York, NY 100031, USA;
    2. Department of Atmospheric Sciences, Nanjing University, Nanjing 210093, China
  • Received:1999-12-30 Revised:2001-04-09 Online:2002-07-25 Published:2002-07-25

摘要: 利用扰动法,由包括耗散和地形的准地转位涡度方程导出了强迫mKdV-Burgers方程,求得了小耗散情形下mKdV-Burgers方程的近似分析解,分析了mKdV孤波质量和能量的时间演变特性.对给定的局地地形,利用拟谱法对强迫mKdV-Burg-ers方程进行了数值求解.结果显示,小耗散的存在使孤波的振幅和移速随时间缓慢地减小,孤波宽度则随时间缓慢增大;在耗散和地形强迫的非线性系统中,在孤波与地形的相互作用中,耗散的存在使孤波在强迫区附近振荡传播,这有利于大振幅扰动的形成.

关键词: mKdV方程, 强迫, 耗散

Abstract: By using a perturbation method, a forced mKdV-Burgers equation is derived from the geostrophic potential vorticity equation including dissipation and topography. An approximate analytic solution of the mKdV-Burgers equation is obtained for the case with a small dissipation. The time evolution of mass and energy of the solitary waves is analyzed, and finally the numerical solutions of the forced mKdV-Burgers equation with a small dissipation are given for a localized topographic forcing by using the pseudo-spectral method. The numerical results show that the presence of small dissipation causes a slow decrease of the amplitude and the propagation speed of the solitary waves and slow increase of the solitary wave width. In the nonlinear system with dissipation and topographic forcing, the dissipation factor forces a moving solitary wave to oscillate in the forcing region during the interaction between the solitary wave and the topographic forcing, and it is advantageous to form large amplitude disturbances.

Key words: mKdV equation, forcing, dissipation

中图分类号: