摘要: 研究离散动力系统双曲不动点的二维流形计算,利用不变流形轨道上Jacobian矩阵能够传递导数这一特殊性质,提出一种新的一维流形计算方法,通过预测-校正两个步骤迅速确定流形上新网格点,避免重复计算,并简化精度控制条件.在此基础上,将基于流形面Foliation条件进行推广,推广后的Foliation条件能够控制二维流形上的一维子流形的增长速度,从而实现二维流形在各个方向上的均匀增长.此外,算法可以同时用于二维稳定和不稳定流形的计算.以超混沌三维Hénon映射和具有蝶形吸引子的Lorenz系统为例验证了算法的有效性.
中图分类号: