计算物理 ›› 1997, Vol. 14 ›› Issue (S1): 702-704.
• 论文 • 上一篇 下一篇
吴承埙1, 周忠源2, 丁培柱2
收稿日期:
修回日期:
出版日期:
发布日期:
基金资助:
Wu Chengxun1, Zhou Zhongyuan2, Ding Peizhu2
Received:
Revised:
Online:
Published:
摘要: 证明了对可分线性哈密顿系统的每个二次形守恒量,1阶和2阶显式辛格式存在对应的格式守恒量;由此可说明,步长适当小时,1阶和2阶显式辛格式保持量子系统的波函数模方守恒,是直接求解时间相关Schrdinger方程(TDSE),以研究量子系统时间演化的合理和有效的数值方法。
关键词: 可分线性哈密顿系统, 显式辛格式, 守恒量
Abstract: The scheme-conservation quantities of the 1-and 2-order explicit symplectic schemes are found according to the quadric-form conservation quantities for Separable and linear Hamiltonian Systems.It can be shown that so long as the time-step is properly small the norm and the energy can keep conservied in certain accuracy.
Key words: separable and linear Hamiltonian system, explicit symplectic scheme, conservation quantity
中图分类号:
O241
吴承埙, 周忠源, 丁培柱. 可分线性哈密顿系统显式辛格式的守恒量[J]. 计算物理, 1997, 14(S1): 702-704.
Wu Chengxun, Zhou Zhongyuan, Ding Peizhu. CONSERVATION QUANTITIES OF THE EXPLICIT SYMPLECTIC SCHEMES FOR SEPARABLE AND LINEAR HAMILTONIAN SYSTEMS[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 14(S1): 702-704.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.cjcp.org.cn/CN/
http://www.cjcp.org.cn/CN/Y1997/V14/IS1/702