计算物理 ›› 1997, Vol. 14 ›› Issue (S1): 702-704.

• 论文 • 上一篇    下一篇

可分线性哈密顿系统显式辛格式的守恒量

吴承埙1, 周忠源2, 丁培柱2   

  1. 1. 吉林大学物理系, 长春 130023;
    2. 吉林大学原子与分子物理研究所, 长春 130023
  • 收稿日期:1997-03-03 修回日期:1997-05-15 出版日期:1997-12-25 发布日期:1997-12-25
  • 基金资助:
    国家自然科学基金和攀登计划项目LSEC资助课题

CONSERVATION QUANTITIES OF THE EXPLICIT SYMPLECTIC SCHEMES FOR SEPARABLE AND LINEAR HAMILTONIAN SYSTEMS

Wu Chengxun1, Zhou Zhongyuan2, Ding Peizhu2   

  1. 1. Dept. of Phys, Jilin university, Changchun 130023;
    2. Inst. of Atomic and Molecular Phys, Jilin university, Changchun 130023
  • Received:1997-03-03 Revised:1997-05-15 Online:1997-12-25 Published:1997-12-25

摘要: 证明了对可分线性哈密顿系统的每个二次形守恒量,1阶和2阶显式辛格式存在对应的格式守恒量;由此可说明,步长适当小时,1阶和2阶显式辛格式保持量子系统的波函数模方守恒,是直接求解时间相关Schrdinger方程(TDSE),以研究量子系统时间演化的合理和有效的数值方法。

关键词: 可分线性哈密顿系统, 显式辛格式, 守恒量

Abstract: The scheme-conservation quantities of the 1-and 2-order explicit symplectic schemes are found according to the quadric-form conservation quantities for Separable and linear Hamiltonian Systems.It can be shown that so long as the time-step is properly small the norm and the energy can keep conservied in certain accuracy.

Key words: separable and linear Hamiltonian system, explicit symplectic scheme, conservation quantity

中图分类号: