计算物理 ›› 1990, Vol. 7 ›› Issue (1): 39-44.

• 论文 • 上一篇    下一篇

用LU分解格式及FAS型多层网格法计算流体力学Euler方程

高书春1, 王保国2   

  1. 1. 北京电热器厂 100010;
    2. 中国科学院工程热物理所, 北京 100080
  • 收稿日期:1988-10-26 修回日期:1989-03-12 出版日期:1990-03-25 发布日期:1990-03-25

LU IMPLICIT SCHEMES WITH FAS-MULTIPLE GRIDS FOR THE EULER EQUATIONS

Gao Shuchun1, Wang Baoguo2   

  1. 1. Beijing Electric Healing Plant;
    2. institute of Engineering Thermophysics Chinese Academy of Sciences, Beijing
  • Received:1988-10-26 Revised:1989-03-12 Online:1990-03-25 Published:1990-03-25

摘要: 本文将LU分解法用于流体力学及空气动力学Euler方程组的计算,使计算可逐点推进,避免了Beam-Warming近似因子分解法出现的块三对角阵的求逆过程;文中还采用FAS型多层网格技术将上述算法进行加速。

关键词: Jameson-Turkel, LU分解格式, FAS型多层网格技术, Euler方程组

Abstract: A lower-upper implicit scheme is developed for the unsteady Euler equations. The scheme requires only two sweeps through the grid and it is unconditionally stable. Each factor represents an algebraic system which is either lower block diagonal or upperblock diagonal and hence the name LU. Inversion of such systems is relatively simple and efficient. A nonlinear multigrid algorithm,full approximation storage (FAS),is combined with LU implicit scheme to produce a rapidlyconvergent algorithm for calculating steady-state solutions of the Euler equations.

Key words: Jameson-Turkel LU scheme, FAS non-linear multigrid algorithm, Euler Equations