计算物理 ›› 1989, Vol. 6 ›› Issue (1): 84-93.

• 论文 • 上一篇    下一篇

梯形闭合空间内多孔介质中自然对流的有限元计算

陈善年, 梁习锋   

  1. 南京工学院
  • 收稿日期:1987-12-16 修回日期:1988-10-16 出版日期:1989-03-25 发布日期:1989-03-25

THE NUMERICAL CALCULATION OF NATURAL CONVECTION IN POROUS MEDIUM WITHIN A CLOSED TRAPEZOIDAL CAVITY USING FINITE ELEMENT METHOD

Chen Shannian, Liang Xifeng   

  1. Najing Institute of Techology
  • Received:1987-12-16 Revised:1988-10-16 Online:1989-03-25 Published:1989-03-25

摘要: 本文采用Galerkin有限无法对梯形闭合空间内多孔介质中的自然对流进行了数值分析与计算。计算区域是从导热区到稳定对流区(Ra:5~350),得到了梯形倾角为0°、5°、10°、30°、45°等角度的流场、温度场分布以及Nu数随Ra数的变化曲线,并详细地讨论了迭代初值、松弛因子、单元数对计算结果的影响。计算结果表明:梯形倾角增大,换热增强,并且在小Ra数(小于第一临界雷利数Rac1=40)的情况下也会形成稳定的流动。最后对计算结果进行了讨论并与其它方法进行了比较。

Abstract: The numerical analysis and calculation or natural convection in porous medium within a closed trapezoidal cavity using Galerkin finite element method are investigated in this paper. The range of the calculation is from conduction state to steady convection state(Ra:5~350). The distributions of flow field and temperature field and the curve of Nusselt number versus Rayleigh number are found for the different trapezoid decline angles of 0°, 5°, 10°, 30°and 45°. The effects of initial valus of iteration, relaxation factors and numble of element on numerical results are studied in detail. It is show when trapezoid decline angle increases the heat transfer intensifies and for the very small Rayleigh numble (c1=40) the steady flow will be formed. Finally, the results of the numerical calculation are discussed and compared with the vesults using other methods.