计算物理 ›› 2016, Vol. 33 ›› Issue (6): 652-660.

• 研究论文 • 上一篇    下一篇

基于曲四面体单元剖分的CN E-H TDFEM方法

叶珍宝1, 朱剑2, 周海京1   

  1. 1. 北京应用物理与计算数学研究所, 北京 100094;
    2. 南京邮电大学通信与信息工程学院, 南京 210006
  • 收稿日期:2015-09-25 修回日期:2016-03-09 出版日期:2016-11-25 发布日期:2016-11-25
  • 通讯作者: 周海京,E-mail:zhou_haijing@iapcm.ac.cn
  • 作者简介:叶珍宝(1982-),女,博士,助理研究员,主要研究电磁场时域数值计算方法和区域分解方法及其应用,E-mail:ye_zhenbao@iapcm.ac.cn
  • 基金资助:
    国家重点基础研究发展计划(2013CB328904)及国家自然科学基金重点项目(61431014)资助

Crank-Nicolson E-H Time-Domain Finite-Element Method Based on Curvilinear Tetrahedral Elements

YE Zhenbao1, ZHU Jian2, ZHOU Haijing1   

  1. 1. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
    2. College of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210006, China
  • Received:2015-09-25 Revised:2016-03-09 Online:2016-11-25 Published:2016-11-25

摘要: 从采用Crank-Nicolson差分格式的基于麦克斯韦旋度方程的E-H时域有限元方法出发,将展开电场和磁场的叠层矢量基函数与曲四面体单元相结合.对金属球谐振腔及介质填充的圆柱形谐振腔的数值模拟表明:相较于规则四面体单元,在剖分单元数目相同的情况下,曲四面体单元离散表面弯曲结构可以获得更高的计算精度.同时,与0.5阶基函数结合曲四面体单元相比,1.0阶基函数与曲四面体单元结合可以用更少的单元数及未知量数目来获得更高的计算精度.

关键词: E-H时域有限元方法, Crank-Nicolson差分, 叠层矢量基函数, 曲四面体单元

Abstract: Based on E-H TDFEM method derived directly from Maxwell's curl equations, Crank-Nicolson difference scheme is implemented for time-partial differential equation to obtain an unconditionally stable algorithm. Curvilinear tetrahedral elements are applied to discretize computational domain and electric and magnetic fields are expanded with same hierarchical vector basis functions. A sphere cavity and a cylindrical cavity partially filled with dielectric rod are simulated. It shows that curvilinear tetrahedral elements can reach higher accuracy with same mesh numbers, compared with tetrahedral elements. Better results can be obtained by curvilinear tetrahedral elements combined with 1.0 order hierarchical basis functions with fewer unknowns than that combined with 0.5 order hierarchical basis functions.

Key words: E-H time-domain finite-element method, Crank-Nicolson scheme, hierarchical vector basis functions, curvilinear tetrahedral elements

中图分类号: