[1] HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41):4135-4195. [2] COTTRELL J A, HUGHES T J R, REALI A. Studies of refinement and continuity in isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41-44):4160-4183. [3] GU J L, ZHANG J M, LI G Y. Isogeometric analysis in BIE for 3-D potential problem[J]. Engineering Analysis with Boundary Elements, 2012, 36(5):858-865. [4] CPTTRELL J A, REALI A, BAZILEVS Y, et al. Isogeometric fluid-structure interaction analysis with application to arterial blood flow[J]. Computational Mechanics, 2006, 38(4):310-322. [5] BAZLIEVS Y, DE VEIGA L B, COTTRELL J A, et al. Isogeometric analysis:Approximation, stability and error estimates for h-refined meshes[J]. Mathematical Models and Methods in Applied Sciences, 2011, 16(7):1031-1090. [6] WALL W A, FRENZEL M A, CYRON C. Isogeometric structural shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33-40):2976-2988. [7] ZHANG Y, BAZILEVS Y, GOSWAMI S, et al. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29-30):2943-59. [8] SEYBERT A F, SOENARKO B, RIZZO F J, et al. An advanced computational method for radiation and scattering of acoustic waves in three dimensions[J]. Journal of the Acoustical Society of America, 1985, 77(2):362-368. [9] LIU Y J, CHEN S H. A new form of the hyper-singular boundary integral equation for 3-D acoustics and its implementation with C0 boundary element[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 173(3):375-386. |