计算物理 ›› 2021, Vol. 38 ›› Issue (3): 269-279.DOI: 10.19596/j.cnki.1001-246x.8238
收稿日期:
2020-06-02
出版日期:
2021-05-25
发布日期:
2021-09-30
通讯作者:
翟传磊
作者简介:
李凌霄(1991-), 男, 博士, 从事辐射输运方程计算方法研究, E-mail: lilingxiao@lsec.cc.ac.cn
基金资助:
Lingxiao LI(), Chuanlei ZHAI(
), Hui XIE, Yi SHI
Received:
2020-06-02
Online:
2021-05-25
Published:
2021-09-30
Contact:
Chuanlei ZHAI
摘要:
为三维灰体热辐射输运方程的隐式离散纵标方法发展一个整体预处理迭代方法并研制并行程序。该方法采用组装线性代数方程组策略,同时求出所有离散方向上的辐射强度。借助预处理的Krylov子空间迭代法,避免复杂网格上扫描算法可能遇到的死锁问题,能够提高健壮性和计算效率。空间离散上采用一阶迎风有限体积格式。数值实验测试变形六面体网格上的收敛率、评估预处理迭代方法的性能并计算辐射和物质的耦合问题,给出三维弯管和黑腔问题的模拟结果,验证程序的正确性和方法的适应性。
中图分类号:
李凌霄, 翟传磊, 谢辉, 施意. 一种求解三维热辐射输运方程的整体预处理迭代方法及并行计算[J]. 计算物理, 2021, 38(3): 269-279.
Lingxiao LI, Chuanlei ZHAI, Hui XIE, Yi SHI. A Monolithic Preconditioned Iterative Solver and Parallel Computing for Three-dimensional Thermal Radiation Transport Equation[J]. Chinese Journal of Computational Physics, 2021, 38(3): 269-279.
网格 | 六面体个数 | ‖ϕ-ϕh‖L2 | 收敛率 | ‖T-Th‖L2 | 收敛率 |
G1 | 512 | 4.48 × 10-2 | 3.27 × 10-2 | ||
G2 | 4 096 | 2.25 × 10-2 | 0.994 | 1.64 × 10-2 | 0.996 |
G3 | 32 768 | 1.13 × 10-2 | 0.994 | 8.19 × 10-3 | 1.002 |
G4 | 262 144 | 5.68 × 10-3 | 0.992 | 4.10 × 10-3 | 0.998 |
表1 空间收敛率
Table 1 Convergence rate of space discretization
网格 | 六面体个数 | ‖ϕ-ϕh‖L2 | 收敛率 | ‖T-Th‖L2 | 收敛率 |
G1 | 512 | 4.48 × 10-2 | 3.27 × 10-2 | ||
G2 | 4 096 | 2.25 × 10-2 | 0.994 | 1.64 × 10-2 | 0.996 |
G3 | 32 768 | 1.13 × 10-2 | 0.994 | 8.19 × 10-3 | 1.002 |
G4 | 262 144 | 5.68 × 10-3 | 0.992 | 4.10 × 10-3 | 0.998 |
网格/进程数 | S2 build | S2 solve | S4 build | S4 solve |
G1/1 | 9.33 s | 1.85 s | 59.18 s | 8.80 s |
G2/8 | 10.87 s | 3.77 s | 73.90 s | 22.73 s |
G3/64 | 12.12 s | 6.63 s | 85.37 s | 46.06 s |
G4/512 | 14.65 s | 11.33 s | 103.27 s | 70.18 s |
表2 解法器并行可扩展性测试
Table 2 Parallel scalability of the solver
网格/进程数 | S2 build | S2 solve | S4 build | S4 solve |
G1/1 | 9.33 s | 1.85 s | 59.18 s | 8.80 s |
G2/8 | 10.87 s | 3.77 s | 73.90 s | 22.73 s |
G3/64 | 12.12 s | 6.63 s | 85.37 s | 46.06 s |
G4/512 | 14.65 s | 11.33 s | 103.27 s | 70.18 s |
S8角度离散 | GMRES | BiCGSTAB | ||||||
时间步 | τ/ns | NonIter | Jacobi | ASM | Jacobi | ASM | ||
88 | 0.2 | 3 | 123 | 25 | 70 | 14 | ||
117 | 24 | 62 | 13 | |||||
128 | 23 | 70 | 14 | |||||
89 | 0.085 6 | 3 | 109 | 23 | 61 | 13 | ||
104 | 22 | 55 | 12 | |||||
109 | 20 | 55 | 10 |
表3 不同预处理Krylov迭代方法的迭代步数对比
Table 3 Comparison of iteration number for different preconditioned Krylov methods
S8角度离散 | GMRES | BiCGSTAB | ||||||
时间步 | τ/ns | NonIter | Jacobi | ASM | Jacobi | ASM | ||
88 | 0.2 | 3 | 123 | 25 | 70 | 14 | ||
117 | 24 | 62 | 13 | |||||
128 | 23 | 70 | 14 | |||||
89 | 0.085 6 | 3 | 109 | 23 | 61 | 13 | ||
104 | 22 | 55 | 12 | |||||
109 | 20 | 55 | 10 |
GMRES+Jacobi | BiCGSTAB+Jacobi | GMRES+ASM | BiCGSTAB+ASM | |
S4 | 236.4 s | 197.1 s | 158.4 s | 126.1 s |
S8 | 2 458.2 s | 2 285.4 s | 2 118.1 s | 1 864.7 s |
表4 32进程时不同预处理Krylov迭代方法的求解时间对比
Table 4 Comparison of solving time for different preconditioned Krylov methods with 32 MPI ranks
GMRES+Jacobi | BiCGSTAB+Jacobi | GMRES+ASM | BiCGSTAB+ASM | |
S4 | 236.4 s | 197.1 s | 158.4 s | 126.1 s |
S8 | 2 458.2 s | 2 285.4 s | 2 118.1 s | 1 864.7 s |
GMRES+Jacobi | BiCGSTAB+Jacobi | |
S4 | 126.1 s | 103.6 s |
S8 | 1 221.9 s | 1 029.4 s |
表5 64进程时不同Krylov迭代方法的求解时间对比
Table 5 Comparison of solving time for different Krylov methods with 64 MPI ranks
GMRES+Jacobi | BiCGSTAB+Jacobi | |
S4 | 126.1 s | 103.6 s |
S8 | 1 221.9 s | 1 029.4 s |
1 | PEI W. The construction of simulation algorithms for Laser Fusion[J]. Commun Comput Phys, 2007, 2 (2): 255- 270. |
2 |
ADAMS M, LARSEN E. Fast iterative methods for discrete-ordinates particle transport calculations[J]. Progress in Nuclear Energy, 2002, 40 (1): 3- 159.
DOI |
3 | SUN W, JIANG S, XU K, et al. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations[J]. J Comput Phys, 2015, 302 (1): 222- 238. |
4 | YANG S, MO Z, SHEN L. The domain decomposition parallel iterative algorithm for the 3-D transport issue[J]. Chinese Journal of Computational Physics, 2004, 21 (1): 1- 9. |
5 |
METROPOLIS N, ULAM S. The Monte Carlo method[J]. American Statistical Association, 1949, 44 (247): 335- 341.
DOI |
6 |
FLECK J, CUMMINGS J. Implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport[J]. J Comput Phys, 1971, 8 (3): 313- 342.
DOI |
7 |
SHI Y, LI S, YONG H, SONG P. An essentially implicit Monte Carlo method for radiative transfer equations[J]. Journal of Computational and Theoretical Transport, 2019, 48 (5): 180- 199.
DOI |
8 |
SHI Y, YONG H, ZHAI C, et al. A functional expansion tally method for gray radiative transfer equations in implicit Monte Carlo[J]. Journal of Computational and Theoretical Transport, 2018, 47 (7): 581- 598.
DOI |
9 | LATHROP K D, CARLSON B G. Discrete ordinates angular quadrature of the neutron transport equation[J]. Los Alamos Scientific Lab, 1964, LA-3186. |
10 | CAPILLA M T, TALAVERA C F. High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation[J]. Journal of Optical Society America A, 2018, 36 (1) |
11 | HANG X, HONG Z, LI S, et al. Deterministic numerical methods for particle transport equations[J]. Chinese Journal of Computational Physics, 2014, 31 (2): 127- 154. |
12 | 阳述林, 魏军侠, 洪振英, 等. 中子输运SN算法及其应用[J]. 中国科学: 信息科学, 2016, 46 (10): 1510- 1526. |
13 |
LARSEN E. A grey transport acceleration method for time-dependent radiative transfer problems[J]. J Comput Phys, 1988, 78, 459- 480.
DOI |
14 |
RAMONE G, ADAMS M, NOWAK P. A transport synthetic acceleration method for transport iterations[J]. Nuclear Science and Engineering, 1997, 125, 257- 283.
DOI |
15 | ALCOUFFE R E. Diffusion synthetic acceleration methods for the diamond-differenced discrete ordinates equations[J]. Nucl Sci Eng, 1977, 64 (3): 344- 355. |
16 |
LARSEN E W. Unconditionally stable diffusion synthetic acceleration methods for the slab geometry discrete ordinates equations Part I: Theory[J]. Nucl Sci Eng, 1982, 82 (1): 47- 63.
DOI |
17 |
TILL A, WARSA J, MOREL J E. Application of linear multifrequency-grey accleration to preconditioned Krylov iterations for thermal radiation transport[J]. J Comput Phys, 2018, 372, 931- 955.
DOI |
18 |
GAO H, ZHAO H. A fast forward solver of radiative equation[J]. Transport Theory and Statistical Physics, 2009, 38, 149- 192.
DOI |
19 | GAO H, ZHAO H. Analysis of a numerical solver for radiative transport equations[J]. Math Comp, 2013, 82 (281): 153- 172. |
20 | FUJIMURA T, TSUTSUI T, HORIKAMI K, et al. Application of finite element method to two-dimensional multi-group neutron transport equation in cylindrical geometry[J]. J Nuclear Science & Tech, 1977, 14 (8): 541- 550. |
21 | WANG D. The asymptotic diffusion limit of numerical schemes for the SN transport equations[J]. Nuclear Science and Engineering, 2019, |
22 |
TAN S, SUN W, WEI J, et al. A parallel unified gas kinetic scheme for three-dimensional multi-group neutron transport[J]. J Comput Phys, 2019, 391, 37- 58.
DOI |
23 |
HANSEL J E, RAGUSA J C. Flux-corrected transport techniques applied to radiation transport equation discretized with continuous finite elements[J]. J Comput Phys, 2018, 354, 179- 195.
DOI |
24 | ZHOU Z, XU X, SHU S, et al. An adaptive two-level preconditioner for 2-D 3-T radiation diffusion equations[J]. Chinese Journal of Computational Physics, 2012, 29 (4): 475- 483. |
25 | BADRI M, JOLIVET , ROUSSEAU B, et al. Preconditioned Krylov subspace methods for solving radiative transfer problems with scattering and reflection[J]. Computers & Mathematics with Applications, 2019, 77 (6): 1453- 1465. |
26 |
ADAMS M P, ADAMS M L, HAWKINS W D, et al. Provably optimal parallel transport sweeps on semi-structured grids[J]. J Comput Phys, 2020, 407, 109234.
DOI |
27 | LI S, YANG R, HANG X. Transport synthetic acceleration methods for multi-group radiative transfer calculations[J]. Chinese Journal of Computational Physics, 2014, 31 (5): 505- 513. |
28 |
SAAD Y, SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM J Sci Stat Comput, 1986, 7 (3): 856- 869.
DOI |
29 |
VAN DER VORST H A. BiCGSTAB: A fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems[J]. SIAM J Sci Stat Comput, 1992, 13 (2): 631- 644.
DOI |
30 |
LIU Q, MO Z, ZHANG A. JAUMIN: A programming framework for large-scale numerical simulation on unstructured meshes[J]. CCF Transactions on High Performance Computing, 2019, 1, 35- 48.
DOI |
[1] | 范宣华, 王柯颖, 肖世富, 陈璞. 强脉动压力下飞行器随机振动分析算法与并行实现[J]. 计算物理, 2021, 38(2): 192-198. |
[2] | 严小松, 杨建伦, 羊奕伟. 康普顿相机图像重建中的快速滤波反投影算法[J]. 计算物理, 2020, 37(2): 153-162. |
[3] | 彭浩, 单鸣雷, 朱昌平, 姚澄. LBM伪势MRT三维模型GPU并行计算的性能优化[J]. 计算物理, 2018, 35(5): 554-562. |
[4] | 于晨阳, 范宣华, 王柯颖, 肖世富. 基于PANDA平台的多点基础激励谐响应的并行计算[J]. 计算物理, 2018, 35(4): 443-450. |
[5] | 李凌霄. 不可压缩流基于块预处理的并行有限元计算[J]. 计算物理, 2018, 35(2): 151-160. |
[6] | 包芸, 叶孟翔, 罗嘉辉. 湍流热对流的高效并行直接求解方法[J]. 计算物理, 2017, 34(6): 651-656. |
[7] | 刘旭, 徐小文, 张爱清. 面向结构网格自适应并行计算的矩形区域求差集快速算法[J]. 计算物理, 2017, 34(5): 563-573. |
[8] | 徐幼平, 程煜峰, 王斌, 郭红, 普业, 程锐. 基于JASMIN框架的区域大气模式并行程序开发及试验[J]. 计算物理, 2017, 34(1): 47-60. |
[9] | 郑征, 王梦琪, 黎辉, 梅其良. 三维离散纵标-蒙特卡罗耦合方法在核电厂堆腔漏束计算中的应用[J]. 计算物理, 2016, 33(5): 599-605. |
[10] | 张若兴, 侯士敏, 丑强. 基于第一性原理量子输运模拟的并行计算[J]. 计算物理, 2015, 32(6): 631-638. |
[11] | 任健, 武林平, 申卫东. 基于JASMIN框架多物理耦合程序的性能优化及分析[J]. 计算物理, 2015, 32(4): 431-436. |
[12] | 朱炼华, 郭照立. 基于格子Boltzmann方法的多孔介质流动模拟GPU加速[J]. 计算物理, 2015, 32(1): 20-26. |
[13] | 李双贵, 杨容, 杭旭登. 多群辐射输运计算的输运综合加速方法[J]. 计算物理, 2014, 31(5): 505-513. |
[14] | 程汤培, 莫则尧, 邵景力. 基于JASMIN的地下水流大规模并行数值模拟[J]. 计算物理, 2013, 30(3): 317-325. |
[15] | 任健, 魏军侠, 曹小林. 基于JASMIN框架的辐射流体与粒子输运耦合计算[J]. 计算物理, 2012, 29(2): 205-212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发