计算物理 ›› 2021, Vol. 38 ›› Issue (4): 393-400.DOI: 10.19596/j.cnki.1001-246x.8287
收稿日期:
2020-10-10
出版日期:
2021-07-25
发布日期:
2021-12-21
通讯作者:
衷斌
作者简介:
YANG Bo (1981-), male, associate researcher, doctor of science, major in nuclear physics, E-mail: heroyb@hotmail.com
Bo YANG(), Bin ZHONG(
), Qi XU, Li CHENG, Liujun PAN, Huayun SHEN
Received:
2020-10-10
Online:
2021-07-25
Published:
2021-12-21
Contact:
Bin ZHONG
Supported by:
摘要:
发展了(α,n)反应中子产额与能谱蒙特卡罗直接模拟方法,该方法采用通用的连续碰撞方法与SRIM程序计算的阻止本领模拟α粒子慢化过程,采用基于JENDL/AN-2005加工后ACE格式数据库计算(α,n)反应中子产额与能谱。基于NPTS程序研制了(α,n)反应模拟功能,轻核(α,n)反应产额与实验结果符合较好,B、F、O靶出射中子能谱与实验结果符合较好,而C、Al、Si与实验结果有一定差异。
中图分类号:
杨波, 衷斌, 徐琪, 成立, 潘流俊, 沈华韵. (α, n)反应中子产额与能谱计算方法[J]. 计算物理, 2021, 38(4): 393-400.
Bo YANG, Bin ZHONG, Qi XU, Li CHENG, Liujun PAN, Huayun SHEN. A Monte-Carlo Simulation Method for Neutron Yield and Spectrum in (α, n) Reaction[J]. Chinese Journal of Computational Physics, 2021, 38(4): 393-400.
Nuclide | Threshold/MeV | Nuclide | Threshold/MeV | Nuclide | Threshold/MeV | ||
6Li | 6.62 | 13C | 0.0 | 23Na | 3.48 | ||
7Li | 4.38 | 14N | 6.09 | 27Al | 3.03 | ||
9Be | 0.0 | 15N | 8.13 | 28Si | 9.25 | ||
10B | 0.0 | 17O | 0.0 | 29Si | 1.74 | ||
11B | 0.0 | 18O | 0.85 | 30Si | 3.96 | ||
12C | 11.34 | 19F | 2.36 |
Table 1 Thresholds of (α, n) reactions
Nuclide | Threshold/MeV | Nuclide | Threshold/MeV | Nuclide | Threshold/MeV | ||
6Li | 6.62 | 13C | 0.0 | 23Na | 3.48 | ||
7Li | 4.38 | 14N | 6.09 | 27Al | 3.03 | ||
9Be | 0.0 | 15N | 8.13 | 28Si | 9.25 | ||
10B | 0.0 | 17O | 0.0 | 29Si | 1.74 | ||
11B | 0.0 | 18O | 0.85 | 30Si | 3.96 | ||
12C | 11.34 | 19F | 2.36 |
Incident energy/MeV | Neutron yield/10-6 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 5.6±0.3 | 6.24±0.25 | 5.95 | |
4.5 | 10.5±0.6 | 10.6±0.4 | 10.40 | |
5.0 | 15.6±0.9 | 15.6±0.6 | 15.54 | |
5.5 | 20.6±1.2 | 20.6±0.8 | 20.61 |
Table 2 Neutron yield of (α, n) reaction in a thick target of B
Incident energy/MeV | Neutron yield/10-6 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 5.6±0.3 | 6.24±0.25 | 5.95 | |
4.5 | 10.5±0.6 | 10.6±0.4 | 10.40 | |
5.0 | 15.6±0.9 | 15.6±0.6 | 15.54 | |
5.5 | 20.6±1.2 | 20.6±0.8 | 20.61 |
Incident energy/MeV | Neutron yield/10-8 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 3.9±0.4 | 4.2±0.3 | 4.33±0.06 | 4.04 |
4.5 | 4.6±0.5 | 4.8±0.4 | 4.97±0.07 | 4.66 |
5.0 | 6.1±0.4 | 6.3±0.3 | 6.47±0.1 | 6.24 |
5.5 | 10.1±0.9 | 10.8±0.5 | 11.2±0.2 | 11.07 |
Table 3 Neutron yield of (α, n) reaction in a thick target of C
Incident energy/MeV | Neutron yield/10-8 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 3.9±0.4 | 4.2±0.3 | 4.33±0.06 | 4.04 |
4.5 | 4.6±0.5 | 4.8±0.4 | 4.97±0.07 | 4.66 |
5.0 | 6.1±0.4 | 6.3±0.3 | 6.47±0.1 | 6.24 |
5.5 | 10.1±0.9 | 10.8±0.5 | 11.2±0.2 | 11.07 |
Incident energy/ MeV | Neutron yield/10-8 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 1.64±0.14 | 1.74 | ||
4.5 | 2.93±0.24 | 3.17 | ||
5.0 | 5.18±0.43 | 4.83 | ||
5.5 | 6.46±0.52 | 7.01 |
Table 4 Neutron yield of (α, n) reaction in a thick target of O
Incident energy/ MeV | Neutron yield/10-8 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 1.64±0.14 | 1.74 | ||
4.5 | 2.93±0.24 | 3.17 | ||
5.0 | 5.18±0.43 | 4.83 | ||
5.5 | 6.46±0.52 | 7.01 |
Incident energy/ MeV | Neutron yield/10-6 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 1.28±0.13 | 0.88±0.06 | 1.14 | |
4.5 | 2.76±0.19 | 2.16±0.15 | 2.77 | |
5.0 | 5.09±0.31 | 4.39±0.31 | 5.34 | |
5.5 | 9.5±0.68 | 7.75±0.54 | 9.51 |
Table 5 Neutron yield of (α, n) reaction in a thick target of F
Incident energy/ MeV | Neutron yield/10-6 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 1.28±0.13 | 0.88±0.06 | 1.14 | |
4.5 | 2.76±0.19 | 2.16±0.15 | 2.77 | |
5.0 | 5.09±0.31 | 4.39±0.31 | 5.34 | |
5.5 | 9.5±0.68 | 7.75±0.54 | 9.51 |
Incident energy/ MeV | Neutron yield/10-8 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 1.9±0.2 | 1.69±0.05 | 1.66±0.03 | 1.47 |
4.5 | 8.7±0.6 | 8.02±0.24 | 8.12±0.12 | 8.11 |
5.0 | 26.0±2.1 | 26.4±0.8 | 28.1±0.4 | 30.60 |
5.5 | 74.7±5.9 | 69.7±2.1 | 75.5±1.0 | 79.00 |
Table 6 Neutron yield of (α, n) reaction in a thick target of Al
Incident energy/ MeV | Neutron yield/10-8 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 1.9±0.2 | 1.69±0.05 | 1.66±0.03 | 1.47 |
4.5 | 8.7±0.6 | 8.02±0.24 | 8.12±0.12 | 8.11 |
5.0 | 26.0±2.1 | 26.4±0.8 | 28.1±0.4 | 30.60 |
5.5 | 74.7±5.9 | 69.7±2.1 | 75.5±1.0 | 79.00 |
Incident energy/ MeV | Neutron yield/10-8 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 0.41±0.04 | 0.397±0.008 | 0.438 | |
4.5 | 1.38±0.15 | 1.6±0.08 | 1.56±0.02 | 1.78 |
5.0 | 5.81±0.57 | 5.2±0.26 | 5.65±0.07 | 5.90 |
5.5 | 11.3±0.9 | 11.4±0.6 | 12.4±0.2 | 12.50 |
Table 7 Neutron yield of (α, n) reaction in a thick target of Si
Incident energy/ MeV | Neutron yield/10-8 | |||
Jacobs, 1983 | West, 1982 | Bair, 1979 | Simulation | |
4.0 | 0.41±0.04 | 0.397±0.008 | 0.438 | |
4.5 | 1.38±0.15 | 1.6±0.08 | 1.56±0.02 | 1.78 |
5.0 | 5.81±0.57 | 5.2±0.26 | 5.65±0.07 | 5.90 |
5.5 | 11.3±0.9 | 11.4±0.6 | 12.4±0.2 | 12.50 |
1 |
MACE E K, SMITH L E. Automated nondestructive assay of UF6 cylinders: Detector characterization and initial measurements[J]. Nuclear Instruments and Methods in Physics Research A, 2011, 652, 62- 65.
DOI |
2 | MCKINNEY G W. MCNPX 2.5.0: New features demonstrated[C]. Proceedings of the MC2005 Conference, Chattanooga, Tennessee, April, 2005: 17-21. |
3 | PRAEL R E, LICHTENSTEIN H. User's guide to the LAHET code system[R]. LA-UR-89-3014, 1989. |
4 |
WILSON W B, PERRY R T, CHARLTON W S, et al. Source: A code for calculating (alpha, n), spontaneous fission, and delayed neutron sources and spectra[J]. Progress in Nuclear Energy, 2009, 51, 608- 613.
DOI |
5 | ZIEGLER J F, ZIEGLER M D, BIERSACK J P. The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268 (11/12): 1818- 1823. |
6 | MURATA T. Evaluation of the (α, xn) reaction data for JENDL/AN-2005[R]. JAEA-Research, 2006-052, 2006. |
7 | CHEN B X, ZHANG Z. Nuclear radiation physics and detection[M]. Harbin: Press of Harbin Institute of Technology, 2011. |
8 |
MONTANARI C C, DIMITRIOU P. The IAEA stopping power database, following the trends in stopping power of ions in matter[J]. Nuclear Instruments and Methods in Physics Research B, 2017, 408, 50- 55.
DOI |
9 | SHI X M, SHEN Y S, WU J. Simulation of alpha-neutron coupled transportation in the low energy region[J]. Chinese Journal of Computational Physics, 2006, 23 (2): 123- 126. |
10 | BAIR J K, GOMEZ C J. Neutron yield from alpha-particle bombardment[J]. Nucl Sci Eng, 1979, 71 (18): 18- 28. |
11 | WEST D, SHERWOOD A C. Measurements of thick-target (α, n) yields from light elements[J]. Ann Nucl Energy, 1982, 9 (10): 541- 552. |
12 |
JACOBS G J H, LISKIEN H. Energy spectra of neutron produced by α-particle in thick targets of light elements[J]. Ann Nucl Energy, 1983, 10 (10): 541- 552.
DOI |
13 | ROSMAN K J R, TAYLOR P D P. Isotopic compositions of the elements 1997[J]. Journal of Physical and Chemical Reference Data, 1998, 27 (10): 1275. |
[1] | 李胜强. 一种针对弱场搜寻态冷极性分子的可控静电表面囚禁方案[J]. 计算物理, 2017, 34(6): 731-739. |
[2] | 付元光, 郑建华, 上官丹骅, 李瑞, 李刚, 马彦, 邓力. 蒙特卡罗粒子输运软件JMCT的网格计数功能设计与实现[J]. 计算物理, 2016, 33(5): 581-586. |
[3] | 张旭辉, 郑委, 刘庆杰, 鲁晓兵. 裂隙多孔介质双重逾渗模型的算法实现[J]. 计算物理, 2014, 31(2): 191-199. |
[4] | 刘志亮, 毛用泽. 由X射线成像反推核爆当量的蒙特卡罗模拟[J]. 计算物理, 2010, 27(1): 15-22. |
[5] | 姚泽恩, 杜洪新, 谭新建, 张宇, Tooru Kobayashi, Gerard Bengua. 厚靶D(d,n)3He反应加速器中子源的产额、能谱和角分布[J]. 计算物理, 2008, 25(6): 744-748. |
[6] | 张立波, 程锦荣. 氮化硼纳米管阵列储氢的计算机模拟[J]. 计算物理, 2007, 24(6): 740-744. |
[7] | 程锦荣, 丁锐, 刘遥. 分形聚集逾渗性质的计算机模拟[J]. 计算物理, 2007, 24(1): 83-89. |
[8] | 王林香, 祝恒江, 张石峰, 王世亨. 200 keV V+注入花生种子深度-浓度分布的蒙特卡罗模拟[J]. 计算物理, 2006, 23(6): 743-747. |
[9] | 程锦荣, 袁兴红, 赵敏, 黄德财, 赵力, 张立波. 结构与尺寸对碳纳米管物理吸附储氢的影响[J]. 计算物理, 2005, 22(1): 70-76. |
[10] | 赵庆勋, 张靖, 辛红丽, 文钦若, 杨景发. EACVD低温合成金刚石薄膜中非线性电场的数值模拟[J]. 计算物理, 2003, 20(5): 399-402. |
[11] | 张连珠. 宏观放电参数对快原子态氮(N+,Nf)的影响[J]. 计算物理, 2003, 20(5): 403-407. |
[12] | 万俊生, 张颖, 张利兴, 夏海鸿, 丁大钊. ADS中子源散裂靶物理研究[J]. 计算物理, 2003, 20(5): 408-412. |
[13] | 叶沿林. 用C语言编写的γ-电子级联过程的蒙特卡罗模拟程序GET[J]. 计算物理, 1994, 11(3): 379-383. |
[14] | 张许生. 用蒙特卡罗模拟方法计算EAS阵列的有效探测面积[J]. 计算物理, 1993, 10(4): 517-522. |
[15] | 王仲奇. Fritiof程序的移植和开发[J]. 计算物理, 1993, 10(4): 523-524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发