计算物理 ›› 2024, Vol. 41 ›› Issue (3): 367-379.DOI: 10.19596/j.cnki.1001-246x.8764
收稿日期:
2023-05-25
出版日期:
2024-05-25
发布日期:
2024-05-25
通讯作者:
曹伟
作者简介:
索雪峰(1981-), 男, 工程师, 博士研究生, 研究方向为固体力学, E-mail: suoxuefeng@chd.edu.cn
基金资助:
Xuefeng SUO(), Denghui HE, Huadong WANG, Wei CAO(
)
Received:
2023-05-25
Online:
2024-05-25
Published:
2024-05-25
Contact:
Wei CAO
摘要:
针对环形热源作用下功能梯度材料三维瞬态热传导分析复杂且耗时的问题, 通过傅里叶-拉普拉斯频响函数、拉普拉斯数值逆变换和二维离散傅里叶逆变换建立指数梯度材料环形热源热传导半解析方法, 并与三维傅里叶变换方法以及有限元方法(FEM)进行对比, 验证本文方法的可靠性。基于半解析方法对比环形热源和高斯热源作用下温度和温度梯度响, 算例表明: 温度和温度梯度分布对环形热源内、外径以及材料梯度指数响应不同; 相比高斯热源, 环形热源的温度场和温度梯度场相对均匀, 改变热源内外径可调节温度峰值和温度梯度峰值。
中图分类号:
索雪峰, 何登辉, 王华栋, 曹伟. 功能梯度材料环形热源三维瞬态温度场计算方法[J]. 计算物理, 2024, 41(3): 367-379.
Xuefeng SUO, Denghui HE, Huadong WANG, Wei CAO. Calculation Method of 3D Transient Temperature Fields in Functionally Graded Materials Subjected to Annular Heat Source[J]. Chinese Journal of Computational Physics, 2024, 41(3): 367-379.
Duration time t0/s | Tmax/℃ ( | T/℃ ( | CPU t/s | |||||||
3D-FFT | Present study | Deviation | 3D-FFT | Present study | Deviation | 3D-FFT | Present study | |||
t0=1 | -32.69 | 8.33 | 125.48% | 459.90 | 462.63 | 0.59% | 61.28 | 171.63 | ||
t0=2 | 24.30 | 46.65 | 91.97% | 319.11 | 315.35 | 1.49% | 60.05 | 173.62 | ||
t0=3 | 99.76 | 109.76 | 10.02% | 194.97 | 197.33 | 1.21% | 60.89 | 172.56 |
表1 本文方法与3D-FFT方法预测结果对比
Table 1 Predicted results from the present method and 3D-FFT method
Duration time t0/s | Tmax/℃ ( | T/℃ ( | CPU t/s | |||||||
3D-FFT | Present study | Deviation | 3D-FFT | Present study | Deviation | 3D-FFT | Present study | |||
t0=1 | -32.69 | 8.33 | 125.48% | 459.90 | 462.63 | 0.59% | 61.28 | 171.63 | ||
t0=2 | 24.30 | 46.65 | 91.97% | 319.11 | 315.35 | 1.49% | 60.05 | 173.62 | ||
t0=3 | 99.76 | 109.76 | 10.02% | 194.97 | 197.33 | 1.21% | 60.89 | 172.56 |
Duration time t0/s | Tmax/℃ ( | T/℃ ( | CPU t/s | ||||||||
FEM | 3D-FFT | Present study | FEM | 3D-FFT | Present study | FEM | 3D-FFT | Present study | |||
t0=0.1 | 63.64 | 59.87 | 62.50 | 173.52 | 170.98 | 184.39 | 1 623.42 | 49.63 | 120.36 | ||
t0=0.2 | 110.60 | 101.57 | 106.83 | 108.35 | 104.21 | 118.96 | 1 931.85 | 51.26 | 122.44 | ||
t0=0.3 | 108.04 | 98.69 | 105.84 | 68.36 | 63.03 | 72.85 | 1 736.64 | 51.31 | 123.56 |
表2 本文方法与3D-FFT和FEM预测结果对比
Table 2 Comparisons of predicted results from the present method and FEM
Duration time t0/s | Tmax/℃ ( | T/℃ ( | CPU t/s | ||||||||
FEM | 3D-FFT | Present study | FEM | 3D-FFT | Present study | FEM | 3D-FFT | Present study | |||
t0=0.1 | 63.64 | 59.87 | 62.50 | 173.52 | 170.98 | 184.39 | 1 623.42 | 49.63 | 120.36 | ||
t0=0.2 | 110.60 | 101.57 | 106.83 | 108.35 | 104.21 | 118.96 | 1 931.85 | 51.26 | 122.44 | ||
t0=0.3 | 108.04 | 98.69 | 105.84 | 68.36 | 63.03 | 72.85 | 1 736.64 | 51.31 | 123.56 |
图12 环形热源内外径对最大温度的影响(a)内径;(b)外径
Fig.12 Influence of inner and outer diameter of annular heat source on the maximum temperature (a)inner radius; (b) outer radius
图13 环形热源内外径对沿X轴温度分布的影响(a)内径;(b)外径
Fig.13 Influence of inner and outer diameter of annular heat source on temperature along X axis (a)inner radius; (b) outer radius
图14 环形热源内外径对沿X轴温度梯度分布的影响(a)内径;(b)外径
Fig.14 Influence of inner and outer diameter of annular heat source on temperature gradient distributions along X axis (a)inner radius; (b) outer radius
图17 材料梯度指数对沿X轴分布温度梯度的影响(a)z=0.0 mm;(b)z=0.10 mm
Fig.17 Influence of material gradient index on temperature gradient distributions along X axis at (a) z=0.0 mm and (b) z=0.10 mm
1 |
蔡珣, 赵涛, 陈秋龙, 等. 铸造铝合金激光表面改性金属-陶瓷梯度层[J]. 机械工程材料, 2002, 26 (1): 25- 28.
DOI |
2 |
GENG Y , MCCARTHY É , BRABAZON D , et al. Ti6Al4V functionally graded material via high power and high speed laser surface modification[J]. Surface and Coatings Technology, 2020, 398, 126085.
DOI |
3 |
KOTAR M , FUJISHIMA M , LEVY G N , et al. Advances in the understanding of the annular laser beam wire cladding process[J]. Journal of Materials Processing Technology, 2021, 294, 117105.
DOI |
4 |
GOVEKAR E , JEROMEN A , KUZNETSOV A , et al. Annular laser beam based direct metal deposition[J]. Procedia CIRP, 2018, 74, 222- 227.
DOI |
5 | ZHANG Jinchao , SHI Shihong , FU Geyan , et al. Analysis on surface finish of thin-wall parts by laser metal deposition with annular beam[J]. Optics & Laser Technology, 2019, 119, 105605. |
6 |
ZHANG Xueyang , XIE Youjun , LI Xianfang . Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction[J]. Applied Mathematical Modelling, 2019, 70, 328- 349.
DOI |
7 |
OGUNTALA G , SOBAMOWO G , ABD-ALHAMEED R . A new hybrid approach for transient heat transfer analysis of convective-radiative fin of functionally graded material under Lorentz force[J]. Thermal Science and Engineering Progress, 2020, 16, 100467.
DOI |
8 | 孙飞, 刘五祥, 张伦伟. 功能梯度半空间体的热弹性问题研究[J]. 力学季刊, 2017, 38 (3): 537- 544. |
9 |
ZHANG Hengliang , KAN Weimin , HU Xuejiao . Green's function approach to the nonlinear transient heat transfer analysis of functionally graded materials[J]. International Journal of Thermal Sciences, 2013, 71, 292- 301.
DOI |
10 |
张驰, 校金友. 用边界元分析功能梯度材料的稳态热传导[J]. 科学技术与工程, 2013, 13 (13): 3563-3565, 3571.
DOI |
11 |
ZHANG H , HAN S , FAN L , et al. The numerical manifold method for 2D transient heat conduction problems in functionally graded materials[J]. Engineering Analysis With Boundary Elements, 2018, 88, 145- 155.
DOI |
12 | 朱宗柏, 曾宪友, 肖金生. 陶瓷/金属梯度材料瞬态传热的有限差分分析[J]. 武汉理工大学学报, 2001, 23 (6): 18- 20. |
13 |
WANG Baolin , TIAN Zhenhui . Application of finite element-finite difference method to the determination of transient temperature field in functionally graded materials[J]. Finite Elements in Analysis and Design, 2005, 41 (4): 335- 349.
DOI |
14 | 许杨健, 涂代惠. 对流换热边界下梯度功能材料板瞬态热传导有限元分析[J]. 材料科学与工程学报, 2003, 21 (1): 76- 79. |
15 |
BURLAYENKO V N , ALTENBACH H , SADOWSKI T , et al. Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements[J]. Applied Mathematical Modelling, 2017, 45, 422- 438.
DOI |
16 | 王磊磊, 纪乐, 马文涛. FGMs稳态热传导分析的重心Lagrange插值配点法[J]. 计算物理, 2020, 37 (2): 173- 181. |
17 |
QU Wenzhen , FAN C M , ZHANG Yaoming . Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method[J]. International Journal of Heat and Mass Transfer, 2019, 145, 118771.
DOI |
18 |
LI Can , LI M M , SUN Xiaorui . Finite difference/Galerkin finite element methods for a fractional heat conduction-transfer equation[J]. Mathematical Methods in the Applied Sciences, 2021, 44 (10): 8302- 8321.
DOI |
19 |
左风丽, 崔霞, 袁光伟. 热传导方程三层并行差分格式初始条件的计算[J]. 计算物理, 2011, 28 (4): 488- 492.
DOI |
20 | 陈恭, 王一正, 王烨, 等. 缩减基有限元方法快速求解参数化偏微分方程[J]. 计算物理, 2018, 35 (5): 515- 524. |
21 |
MALEK M , IZEM N , MOHAMED M S , et al. A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials[J]. International Journal of Heat and Mass Transfer, 2020, 155, 119804.
DOI |
22 |
ZENG D , LATHAM W P , KAR A . Temperature distributions due to annular laser beam heating[J]. Journal of Laser Applications, 2005, 17 (4): 256- 262.
DOI |
23 | SHEN Junyong , ZHANG Xiaohui . Analysis of dual-phase-lag heat conduction in a two-dimensional slab heated by a moving annular laser pulse[J]. Applied Mathematical Modelling, 2022, 105, 160- 178. |
24 | CHEN Guibo , BI Juan . Modeling of annular long pulsed laser heating solid material using closed-form solutions[J]. Optik, 2017, 135, 389- 394. |
25 | XU Yuting , ZHANG Xiaohui , SHEN Junyong , et al. Temperature behavior of metal surface with moving annular hollow laser heat source[J]. Journal of Laser Applications, 2020, 32 (4): 042014. |
26 | WANG Ruiqin , DAI Shijie , ZHANG Huibo , et al. The temperature field study on the annular heat source model in large surface grinding by cup wheel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93 (9): 3261- 3273. |
27 | ZHANG X , WANG Q J , ZENG Z , et al. An LT-FFT based model for diffusion-affected contacts[J]. Tribology International, 2021, 157, 106890. |
28 | LIU Shuangbiao , RODGERS M J , WANG Qian , et al. Temperature distributions and thermoelastic displacements in moving bodies[J]. Computer Modeling in Engineering & Sciences, 2002, 3 (4): 465- 482. |
29 | LIU Shuangbiao , WANG Qian . Transient thermoelastic stress fields in a half-space[J]. Journal of Tribology, 2003, 125 (1): 33- 43. |
30 | KUHLMAN K L . Review of inverse Laplace transform algorithms for Laplace-space numerical approaches[J]. Numerical Algorithms, 2013, 63, 339- 355. |
31 | CHOI H J , PAULINO G H . Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation[J]. Journal of the Mechanics and Physics of Solids, 2008, 56 (4): 1673- 1692. |
32 | STEHFEST H . Algorithm 368: Numerical inversion of Laplace transforms[D5][J]. Communications of the ACM, 1970, 13 (1): 47- 49. |
33 | TALBOT A . The accurate numerical inversion of Laplace transforms[J]. IMA Journal of Applied Mathematics, 1979, 23 (1): 97- 120. |
34 | D'AMORE L , LACCETTI G , MURLI A . An implementation of a Fourier series method for the numerical inversion of the Laplace transform[J]. ACM Transactions on Mathematical Software, 1999, 25 (3): 279- 305. |
35 | ABBAS I A , MARIN M . Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 254- 260. |
36 | SHEN Junyong , ZHANG Xiaohui . Investigation of molten pool and heat transfer mechanisms after moving annular laser incidence metal by lattice Boltzmann method[J]. Journal of Manufacturing Processes, 2022, 80, 729- 742. |
[1] | 王磊磊, 纪乐, 马文涛. FGMs稳态热传导分析的重心Lagrange插值配点法[J]. 计算物理, 2020, 37(2): 173-181. |
[2] | 董和风, 王克协, 董庆德. 水平薄层包围的流体井孔中声波场的数值模拟[J]. 计算物理, 1995, 12(4): 449-456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发