1 |
鄂维南. AI助力打造科学研究新范式[J]. 中国科学院院刊, 2024, 39 (1): 10- 16.
|
2 |
BRUNTON S L , PROCTOR J L , KUTZ J N . Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (15): 3932- 3937.
|
3 |
CARLEO G , TROYER M . Solving the quantum many-body problem with artificial neural networks[J]. Science, 2017, 355 (6325): 602- 606.
DOI
|
4 |
RUDY S H , BRUNTON S L , PROCTOR J L , et al. Data-driven discovery of partial differential equations[J]. Science Advances, 2017, 3 (4): e1602614.
DOI
|
5 |
E Weinan, YU BING. The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems[DB/OL]. arXiv, 2017(2017-09-30). https://arxiv.org/abs/1710.00211.
|
6 |
HAN Jiequn , JENTZEN A , E Weinan . Solving high-dimensional partial differential equations using deep learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (34): 8505- 8510.
|
7 |
RAISSI M , PERDIKARIS P , KARNIADAKIS G E . Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378, 686- 707.
DOI
|
8 |
SIRIGNANO J , SPILIOPOULOS K . DGM: A deep learning algorithm for solving partial differential equations[J]. Journal of Computational Physics, 2018, 375, 1339- 1364.
DOI
|
9 |
ZANG Yaohua , BAO Gang , YE Xiaojing , et al. Weak adversarial networks for high-dimensional partial differential equations[J]. Journal of Computational Physics, 2020, 411, 109409.
DOI
|
10 |
BAO G , YE X , ZANG Y , et al. Numerical solution of inverse problems by weak adversarial net-works[J]. Inverse Problems, 2020, 36 (11): 115003.
DOI
|
11 |
CUCKER F , SMALE S . Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52 (5): 852- 862.
DOI
|
12 |
何大韧, 刘宗华, 汪秉宏. 复杂系统与复杂网络[M]. 北京: 高等教育出版社, 2009.
|
13 |
DEMIDOVA L , GORCHAKOV A . Research and study of the hybrid algorithms based on the collective behavior of fish schools and classical optimization methods[J]. Algorithms, 2020, 13 (4): 85.
DOI
|
14 |
MANN R P , GARNETT R . The entropic basis of collective behaviour[J]. Journal of the Royal Society, Interface, 2015, 12 (106): 20150037.
DOI
|
15 |
VICSEK T , CZIRÓK A , BEN-JACOB E , et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75 (6): 1226- 1229.
DOI
|
16 |
COUZIN I D , KRAUSE J , JAMES R , et al. Collective memory and spatial sorting in animal groups[J]. Journal of Theoretical Biology, 2002, 218 (1): 1- 11.
DOI
|
17 |
HA S Y , LIU Jianguo . A simple proof of the Cucker-Smale flocking dynamics and mean-field limit[J]. Communications in Mathematical Sciences, 2009, 7 (2): 297- 325.
DOI
|
18 |
KIM J H , PARK J H . Complete characterization of flocking versus nonflocking of Cucker–Smale model with nonlinear velocity couplings[J]. Chaos, Solitons & Fractals, 2020, 134, 109714.
|
19 |
MOTSCH S , TADMOR E . A new model for self-organized dynamics and its flocking behavior[J]. Journal of Statistical Physics, 2011, 144 (5): 923.
DOI
|
20 |
HASKOVEC J . Flocking dynamics and mean-field limit in the Cucker–Smale-type model with topological interactions[J]. Physica D. Nonlinear Phenomena, 2013, 261, 42- 51.
DOI
|
21 |
SHEN J . Cucker-Smale flocking under hierarchical leadership[J]. SIAM Journal on Applied Mathematics, 2008, 68 (3): 694- 719.
DOI
|
22 |
LI Zhuchun , XUE Xiaoping . Cucker–Smale flocking under rooted leadership with fixed and switching topologies[J]. SIAM Journal on Applied Mathematics, 2010, 70 (8): 3156- 3174.
DOI
|
23 |
GIARDINA I . Collective behavior in animal groups: theoretical models and empirical studies[J]. HFSP Journal, 2008, 2 (4): 205- 219.
DOI
|
24 |
MAO Zhiping , LI Zhen , KARNIADAKIS G E . Nonlocal flocking dynamics: learning the fractional order of PDEs from particle simulations[J]. Communications on Applied Mathematics and Computation, 2019, 1 (4): 597- 619.
DOI
|
25 |
PESZEK J . Discrete Cucker-Smale's flocking model with a weakly singular weight[J]. SIAM Journal on Mathematical Analysis, 2015, 47 (5): 3671- 3686.
DOI
|
26 |
FIGALLI A , KANG M J . A rigorous derivation from the kinetic Cucker-Smale model to thepressureless Euler system with nonlocal alignment[J]. Anal. PDE, 2019, 12 (3): 843- 866.
DOI
|
27 |
SHVYDKOY R , TADMOR E . Eulerian dynamics with a commutator forcing[J]. Transactions of Mathematics and Its Applications, 2017, 1 (1): 1- 26.
|
28 |
LU Lu , JIN Pengzhan , PANG Guofei , et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3 (3): 218- 229.
DOI
|
29 |
YANG Liu , MENG Xuhui , KARNIADAKIS G E . B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425, 109913.
DOI
|