计算物理 ›› 2011, Vol. 28 ›› Issue (2): 237-242.

• 论文 • 上一篇    下一篇

多层快速多极子算法中的两步插值技术

向道朴, 周东明, 何建国   

  1. 国防科技大学电子科学与工程学院, 湖南 长沙 410073
  • 收稿日期:2010-03-11 修回日期:2010-09-10 出版日期:2011-03-25 发布日期:2011-03-25
  • 作者简介:向道朴(1980-),男,博士生,主要从事积分方程及快速算法,时频分析理论与应用的研究.
  • 基金资助:
    武器装备预研重点基金项目(9140A31020609KG0170)资助项目

Two-step Interpolation Method for Multilevel Fast Multipole Algorithm

XIANG Daopu, ZHOU Dongming, HE Jianguo   

  1. School of Electronics Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2010-03-11 Revised:2010-09-10 Online:2011-03-25 Published:2011-03-25

摘要: 多层快速多极子算法(MLFMA)在快速多极子算法(FMM)的基础上按多层聚集、层间转移和多层扩散的思路以达到优化矩阵向量积的运算的目的,其中多层聚集和多层扩散过程,随着层数递增,角谱积分采样点数逐层递增,为了快速计算角谱积分,需要采用插值技术和反插值技术以提高计算效率.应用两步插值技术替代传统的单步插值技术,大幅提高了多层快速多极子层间插值反插值操作的计算效率,对于应用普通个人计算机求解特大电大尺寸问题,具有重要意义.

关键词: 插值反插值, 电大尺寸问题, 多层快速多极子

Abstract: A multilevel fast multipole algorithm(MLFMA),based on fast multipole method(FMM),is implemented with aggregation,translation and disaggregation stages to optimize computational complexity.Local interpolations are required in aggregation and disaggregation stages of MLFMA in order to match sampling rates of radiated and incoming fields in consecutive levels.A conventional one-step method is decomposed into two one-dimensional interpolations applied successively.Due to significant acceleration in processing time,the proposed two-step method is especially useful for large-scale objects discretized with millions of unknowns.

Key words: interpolation and anterpolation, large-scale problem, multilevel fast multipole algorithm

中图分类号: