计算物理 ›› 2010, Vol. 27 ›› Issue (1): 45-50.

• 研究论文 • 上一篇    下一篇

层内突进传质扩散数学模型及求解

李俊键, 姜汉桥, 刘同敬   

  1. 中国石油大学(北京)石油工程教育部重点实验室, 北京 102249
  • 收稿日期:2008-07-17 修回日期:2008-11-25 出版日期:2010-01-25 发布日期:2010-01-25
  • 作者简介:李俊键(1983-),男,博士生,主要从事油藏数值模拟及示踪剂测试及解释方面的研究.
  • 基金资助:
    中石油风险基金(聚驱后油层动态非均质性的示踪剂解释技术研究);863(渤海油田聚合物驱提高采收率技术研究(200701209400))资助项目

Tracer Transport in Intraformational Water Channeling Reservoir

LI Junjian, JIANG Hanqiao, LIU Tongjing   

  1. Key Lab of Petroleum Engineering, China University of Petroleum, Beijing 102249
  • Received:2008-07-17 Revised:2008-11-25 Online:2010-01-25 Published:2010-01-25

摘要: 针对窜流型油藏的特点,抽象出物理原型,同时考虑纵向和横向扩散,建立层内突进传质扩散数学模型.应用拉普拉斯变换,求得层内突进传质扩散数学模型的解析解,并得到小段塞情况下的解析解.应用通用有限元分析软件,建立层内突进传质扩散的几何模型,并求得层内突进传质扩散数学模型的数值解.绘制层内突进传质扩散数学模型的浓度分布二维剖面及不同时间步的浓度变化剖面;通过无因次距离和无因次浓度关系及孔隙体积与无因次浓度关系可以看出,贝克莱特(Pe)数越大,峰值浓度越高,见剂时间越晚.通过解析解及数值解结合的方法,可加深对传质扩散本质的理解.

关键词: 层内突进, 传质扩散数学模型, 横向扩散, 解析解, 数值解

Abstract: We establish a 2D diffusion mathematic model considering transverse diffusion and feature of channeling reservoir.With Laplace transform an analytical model is solved.A solution with small slug is found.With general-purpose finite element software in a geometrical model numerical solution is solved.2D concentration profile is ploted.It is shown that larger Peclet number leads to higher peak concentration and later break through time.With combination of analytic solution and numerical solution,it is helpful in understanding the essential of mass transfer diffusion.

Key words: water channeling reservoir, tranport mathmatic model, tranverse transport, analytical solution, numerical solution

中图分类号: