计算物理 ›› 2015, Vol. 32 ›› Issue (5): 523-528.

• 论文 • 上一篇    下一篇

基于WENO重构的熵稳定格式求解浅水方程

程晓晗, 聂玉峰, 蔡力   

  1. 西北工业大学应用数学系, 陕西 西安 710072
  • 收稿日期:2014-08-26 修回日期:2014-12-01 出版日期:2015-09-25 发布日期:2015-09-25
  • 作者简介:程晓晗(1987-),男,安徽枞阳,博士生,主要从事计算流体力学的研究,E-mail:chengxh168@163.com
  • 基金资助:
    国家自然科学基金(11171043,11471261);西北工业大学博士论文创新基金(CX201426)资助项目

WENO Based Entropy Stable Scheme for Shallow Water Equations

CHENG Xiaohan, NIE Yufeng, CAI Li   

  1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2014-08-26 Revised:2014-12-01 Online:2015-09-25 Published:2015-09-25

摘要: 针对浅水方程,提出一种数值求解格式:空间方向采用满足熵稳定条件的数值通量,并在单元交界面处进行高阶WENO重构,时间上的推进采用强稳定的Runge-Kutta方法.模拟一维和二维经典问题,结果表明,该格式具有分辨率高、基本无振荡性等特点.

关键词: 浅水方程, 熵稳定通量, WENO重构

Abstract: A high resolution scheme is presented for shallow water equations. The scheme is based on entropy stable numerical flux with high order weighted essentially non-oscillatory (WENO) reconstruction at cell interfaces. A strong stability-preserving Runge-Kutta method is employed to advance in time. Several benchmark numerical examples demonstrate that the scheme is accurate and non-oscillatory.

Key words: shallow water equations, entropy stable flux, WENO reconstruction

中图分类号: