计算物理 ›› 2007, Vol. 24 ›› Issue (1): 35-41.

• 论文 • 上一篇    下一篇

一种改进的无单元伽辽金方法

曾亿山1,2, 曾清红2   

  1. 1. 合肥工业大学机械与汽车工程学院, 安徽 合肥 230009;
    2. 中国科学技术大学力学和机械工程系, 安徽 合肥 230027
  • 收稿日期:2005-09-26 修回日期:2006-03-27 出版日期:2007-01-25 发布日期:2007-01-25
  • 作者简介:曾亿山(1965-),男,安徽舒城,副教授,博士后,主要从事数值计算方法理论及应用研究,合肥市中国科学技术大学力学和机械工程系230027.
  • 基金资助:
    国家自然科学基金(10102020);国家973项目(G1999032805)资助项目

An Improved Element Free Galerkin Method

ZENG Yishan1,2, ZENG Qinghong2   

  1. 1. School of Machinery and Automobile Engineering Hefei University of Technology, Hefei 230009, China;
    2. Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230027, China
  • Received:2005-09-26 Revised:2006-03-27 Online:2007-01-25 Published:2007-01-25

摘要: 使用单位分解积分,对传统的无单元伽辽金方法进行改进.有限覆盖和单位分解是单位分解积分的数学基础,对单位分解积分进行了严格证明,并指出使用Shepard函数作为单位分解函数是一个很好的选择.数值实例表明,使用单位分解积分进行数值求积的无单元伽辽金方法是一种真正的无网格方法,与经典的背景网格积分相比具有更高的精度.

关键词: 无网格方法, 无单元伽辽金方法, 数值积分, 有限覆盖, 单位分解, 单位分解积分

Abstract: The element-free Galerkin method (EFGM) is improved with partition of unity quadrature (PUQ).Partition of unity quadrature is shown strictly with finite covering and partition of unity.Using Shepard functions as partition of unity functions,we obtain good results.The EFGM with PUQ is a true meshless method. Computational results of EFGM with partition of unity quadrature are more accurate than those of the traditional EFGM with background quadrature.

Key words: meshless method, element free Galerkin method, numerical quadrature, finite covering, partition of unity, partition of unity quadrature

中图分类号: