导航切换
计算物理
首页
期刊介绍
期刊简介
基本信息
征稿简则
期刊历史
编委会
第七届编委会
历届编委会
作者中心
投稿须知
作者登录
下载中心
修稿通知
最新录用
审稿中心
专家审稿
编委审稿
主编审稿
审稿政策
常见问题
常见问题
联系我们
English
期刊
出版年
关键词
结果中检索
(((况晓静[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
基于紧致差分格式的高效时域有限差分算法
况晓静, 王道平, 张量, 吴先良, 沈晶, 沈勐
计算物理 2014, 31 (
1
): 91-95.
摘要
(
319
)
PDF
(1729KB)(
1139
)
可视化
探讨一种基于紧致差分格式的高效时域有限差分算法(high-order compact-FDTD),该方法不仅提高计算精度,而且网格结点少、内存使用率和CPU时间大为降低.利用紧致格式FDTD方法实现无耗波导系统及光子晶体光纤中电磁波传播的数值模拟.通过计算实例验证算法的高效性.
相关文章
|
多维度评价
Select
高阶辛算法的稳定性与数值色散性分析
黄志祥, 沙威, 吴先良, 陈明生, 况晓静
计算物理 2010, 27 (
1
): 82-88.
摘要
(
296
)
PDF
(277KB)(
1068
)
可视化
利用Maxwell方程的哈密尔顿函数,导出对应的欧拉-哈密尔顿方程.利用辛积分技术与高阶交错差分技术,建立求解三维时域Maxwell方程的高阶辛算法;结合电磁场中的物理概念,借助矩阵分析和张量分析理论,获得高阶时域方法及高阶辛算法的稳定性和数值色散性的统一处理新方法.用数值结果证实方法的正确性,与FDTD算法和其它时域高阶方法相比,高阶辛算法具有较大的计算优势,为电磁计算提供了新的途径.
相关文章
|
多维度评价