提出一种基于遗传算法优化注意力机制的深度长短期记忆网络(DLSTM)方法,用于电力系统的混沌预测。通过传递共享参数,将遗传算法优化的注意力机制加入DLSTM模型中,可以挖掘时间序列中潜在特征,同时避免陷入局部优化。该方法是一种受进化计算方法启发的寻优方法,可以很好地学习注意力层中的参数。电力系统混沌预测实验表明所提模型比其他参考模型具有更高的预测精度和长期预测能力。