导航切换
计算物理
首页
期刊介绍
期刊简介
基本信息
征稿简则
期刊历史
编委会
第七届编委会
历届编委会
作者中心
投稿须知
作者登录
下载中心
修稿通知
最新录用
审稿中心
专家审稿
编委审稿
主编审稿
审稿政策
常见问题
常见问题
联系我们
English
期刊
出版年
关键词
结果中检索
(((李健[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
基于三维磁成像的近场磁性体探测
李健, 金春杏, 张宇, 黄新敬
计算物理 2020, 37 (
1
): 88-96. DOI:
10.19596/j.cnki.1001-246x.7966
摘要
(
348
)
HTML
(
1
)
PDF
(15631KB)(
1102
)
可视化
提出一种近场条件下未知磁源的三维磁成像方法.考虑到大多数磁性体不仅受背景磁场磁化,本身也带有较强剩磁,将观测面上的磁场转换为磁场矢量异常模量,并建立目标函数进行最优化求解,以得到符合观测磁场特征的磁性体磁化模型.仿真和实验表明:此方法可有效消除剩磁对反演结果的影响,能够实现对近场多个磁源磁化率分布的成像,验证了所提方法用于探测隐含磁体位置和形状的可行性.
参考文献
|
相关文章
|
多维度评价
Select
解二维涡度方程的带有单向限制算子的Fourier-Chebyshev拟谱方法
郭本瑜, 李健
计算物理 1992, 9 (
4
): 437-439.
摘要
(
155
)
PDF
(174KB)(
900
)
可视化
近年来,谱方法和拟谱方法飞速发展起来,它为流体力学偏微分方程数值解提供了又一强有力的工具。谱方法的稳定性较好,但计算量大,而拟谱方法计算量较小。对于一般的解线性偏微分方程,拟谱方法可能造成不稳定性,即产生所谓混迭效应。为克服这一缺点,郭本瑜等提出了一种用限制算子达到滤波效果的拟谱方法,并得到了很好的数值结果。
相关文章
|
多维度评价