期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
基于Bloch球面搜索的量子粒子群优化算法
李盼池, 王琪超, 施光尧
计算物理    2013, 30 (3): 454-462.  
摘要376)      PDF (896KB)(1267)   
通过分析量子势阱粒子群优化算法的设计过程,提出一种基于Bloch球面搜索的量子粒子群优化算法.首先用基于Bloch球面描述的量子位描述粒子,用泡利矩阵建立旋转轴,用Delta势阱模型计算旋转角度,用量子位在Bloch球面上的绕轴旋转实现搜索.然后用Hadamard门实现粒子变异,以避免早熟收敛.这种旋转可使当前量子位沿着Bloch球面上的大圆逼近目标量子位,从而可加速优化进程.仿真结果表明,该算法的优化能力优于原算法.
相关文章 | 多维度评价
加权量子搜索算法及其相位匹配条件研究
李盼池, 李士勇
计算物理    2008, 25 (5): 623-630.  
摘要372)      PDF (377KB)(1075)   
目前的Grover算法在无序数据库中搜索多个目标时,得到不同目标的几率是相等的,不考虑各个目标重要程度的差异;并且当目标数超过数据库记录总数的四分之一时,搜索到目标的几率迅速下降,当目标数超过记录总数的一半时,算法失效.针对这两个问题,首先提出一种基于加权目标的搜索算法.根据各子目标的重要程度,为每个子目标赋予一个权系数,应用这些权系数将多个子目标表示成一个量子叠加态,这样可使得到每个子目标的几率等于其自身的权系数;其次,提出自适应相位匹配条件,该条件中两次相位旋转的方向相反,大小根据目标量子叠加态和系统初始状态的内积决定.当该内积大于等于((3-√5)/8)1/2时,至多只需两步搜索,即可以恒等于1的几率得到搜索目标.实验表明,算法及其相位匹配条件是有效的.
相关文章 | 多维度评价