|
裂缝性介质多尺度深度学习模型
张庆福, 姚军, 黄朝琴, 李阳, 王月英
计算物理
2019, 36 (6):
665-672.
DOI: 10.19596/j.cnki.1001-246x.7962
结合人工神经网络建立裂缝介质多尺度深度学习流动模型.基于一套粗网格和一套细网格,通过在粗网格上训练数据,多尺度神经网络能够以较少的自由度训练出准确的神经网络.并在粗网格上通过求解局部流动问题获得多尺度基函数,结合神经网络进一步得到精细网格的解.基于离散裂缝的流动方程可视为多层网络,网络层数依赖于求解时间步数.阐述裂缝介质多尺度机器学习数值计算格式的建立,介绍如何使用多尺度算法构建离散裂缝模型的多尺度基函数,并采用超样本技术进一步提高计算准确性.数值结果表明,多尺度有限元算法与机器学习结合是一种有效的流体流动模拟算法.
参考文献 |
相关文章 |
多维度评价
|
|