导航切换
计算物理
首页
期刊介绍
期刊简介
基本信息
征稿简则
期刊历史
编委会
第七届编委会
历届编委会
作者中心
投稿须知
作者登录
下载中心
修稿通知
最新录用
审稿中心
专家审稿
编委审稿
主编审稿
审稿政策
常见问题
常见问题
联系我们
English
期刊
出版年
关键词
结果中检索
(((王现辉[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
二维Helmholtz边界超奇异积分方程解析研究
王现辉, 郑兴帅, 乔慧, 张小明
计算物理 2017, 34 (
6
): 666-672.
摘要
(
392
)
HTML
(
0
)
PDF
(1301KB)(
1181
)
可视化
基于常规边界元法及超奇异边界积分方程复线性耦合的Burton-Miller方法应用于无限域声学问题的最大难点在于处理超奇异积分(二维问题).目前,此类超奇异积分主要使用各种弱奇异/正则化方法求解,而这些弱奇异/正则化方法具有时间消耗大等弱点.基于围道积分定理,本文给出一种使用常值单元的二维Helmholtz边界超奇异积分的解析表达式.在有限部分积分意义下,所有的奇异和超奇异积分可以解析表达.数值算例表明该解析表达式是有效的.
参考文献
|
相关文章
|
多维度评价
Select
基于等几何分析的边界元法求解Helmholtz问题
王现辉, 乔慧, 张小明, 谷金良
计算物理 2017, 34 (
1
): 61-66.
摘要
(
585
)
HTML
(
1
)
PDF
(2234KB)(
1913
)
可视化
将基于一类局部双变量B样条函数的等几何分析方法和Burton-Miller方法相结合,分析三维Helmholtz问题.对于某些从二维参数域映射到三维空间具有奇异点的参数曲面,该方法可以有效地避免奇异点处大量奇异与近奇异积分的计算.数值算例表明该方法具有较好的计算精度和计算效率.复杂问题的分析表明,该方法具有良好的工程应用前景.
参考文献
|
相关文章
|
多维度评价