CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 1988, Vol. 5 ›› Issue (4): 473-477.

Previous Articles     Next Articles

A HIGHER ORDER ACCURACY NUMERICAL QUADRATURE RULE

Wu Xin-yuan   

  1. Najing University
  • Received:1987-12-08 Online:1988-12-25 Published:1988-12-25

Abstract: This paper discusses the following quadrature rule with higher degree of accuracy abf(x)dx)=(b-a)(7f(a)+16f((a+b)/(2))+7f(b)+(b-a)(f'(a)-f'(b)))/30+E[f] Where E[f]=((b-a)7/(604800))f(6)(ξ),a<ξ<b andits Compositrule are presented aswell:ab(f(x)dx)=(b-a)((7f(a+2ih)+7???19880410-2???f(a+2ih)+16f(a+2i-1h)+(b-a)(f'(a)-f(b))/2n)/30n+En[f] Where En[f]=((b-a)7)/(604800n6)f(6)(η),a< η< b h=(b-a)/2n which possess the all advantages of simpsons rule, but the degree of accuracy isincreased by two order than Simpson's rule.The numerical tests that the quadrature formula of this paper is very efficient.