[1] MISCHAIKOW K, MROZEK M. Chaos in the Lorenz equations: a computer-assisted proof[J]. Bulletin of the American Mathematical Society, 1995, 32(1): 66-72. [2] LI Q, YANG X S, CHEN S. Hyperchaos in a spacecraft power system[J]. International Journal of Bifurcation and Chaos, 2011,21: 1719-1726. [3] YANG X S. Horseshoe chaos in a simple memristive circuit[J]. International Journal of Bifurcation and Chaos, 2009,19: 1127-1145. [4] LI Q, YANG X S. Topological horseshoe in a chaotic system with no equilibria[J]. International Journal of Bifurcation and Chaos, 2010, 20: 467-478. [5] LI C, YU S, LUO X. Theoretical design and circuit implementation of integer domain chaotic systems[J]. International Journal of Bifurcation and Chaos,2013, 23: 1350170. [6] LI J, LIU F, GUAN Z H. A new chaotic Hopfield neural network and its synthesis via parameter switchings[J]. Neurocomputing, 2013, 117: 33-39. [7] SRISUCHINWONG B, AMONCHAILERTRAT N. Realization of a lambert W function for a chaotic circuit[J]. Journal of Circuits, Systems and Computers, 2013,22: 1350075. [8] LI Q, ZENG H, YANG X S. Simulation of the classical analog phase-locked loop based circuits[J]. Nonlinear Dynamics, 2014, 77: 255-266. [9] 李清都,唐宋. 三维超混沌映射拓扑马蹄寻找算法及应用[J]. 物理学报,2013, 62: 020510. [10] ZHOU P, YANG F. Hyperchaos chaos and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points[J]. Nonlinear Dynamics, 2014,76: 473-480. [11] LI Q D, TANG S, YANG X S. Hyperchaotic set in continuous chaos-hyperchaos transition[J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19: 3718-3734. [12] GUCKENHEIMER J, OLIVA R A. Chaos in the Hodgkin-Huxley model[J]. SIAM Journal on Applied Dynamical Systems, 2002,1: 105-114. [13] LI Q, GUO J, YANG X S. Bifurcation and chaos in the simple passive dynamic walking model with upper body[J]. Chaos, 2014, 24: 033114. [14] YANG X S, LI Q D, CHENG S J. Horseshoe chaos and topological entropy estimate in a simple power system[J]. Applied Mathematics and Computation, 2009,2(11): 467-473. [15] FAN Q J. Topological horseshoe in nonlinear Bloch system[J]. Chinese Physics B, 2010, 12(19): 120508. [16] COLLINS S, RUINA A, TEDRAKE R, WISSE M. Efficient bipedal robots based on passive-dynamic walkers[J]. Science, 2005,(7): 1082-1085. [17] VERDAASDONK B W, KOOPMAN H F J M, van der HEL F C T. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control[J]. Biological Cybernetics, 2009,1(01): 49-61. [18] MCGEER T. Passive dynamic walking[J]. International Journal of Robotics Research, 1990,9: 62-82. [19] LI Q, YANG X S. New walking dynamics in the simplest passive bipedal walking model[J]. Applied Mathematical Modelling, 2012,11(36): 5262-5271. [20] 李清都,周红伟,杨晓松. 基于异构计算的简单行走模型的吸引区域研究[J]. 物理学报,2012,61: 040503. [21] LI Q, TANG S, YANG X S. New bifurcations in the simplest passive walking model[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2013,4(23): 043110. [22] FARSHIMI F, NARAGHI M. A passive biped model with multiple routes to chaos[J]. Acta Mechanica Sinica, 2011,27(2): 277-284. [23] 柳宁, 李俊峰, 王天舒. 双足模型步行中的倍周期步态和混沌步态现象[J]. 物理学报,2009, 58(6): 3772. [24] GOSWAMI A, THUILOT B, ESPIAU B. A study of the passive gait of a compass-like biped robot symmetry and chaos[J]. International Journal of Robotics Research,1998,17(12): 1282-1301. [25] GRITLI H, KHRAIEF N, BELGHITH S. Period-three route to chaos induced by a cyclic-fold bifurcation in passive dynamic walking of a compass-gait biped robot[J]. Communications in Nonlinear Science and Numerical Simulation, 2012,17: 4356-4372. [26] OTT E, GREBOGI C,YORKE J A. Controlling chaos[J]. Physical Review Letters, 1990, 64(11): 1196-1199. |