[1] LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks [J]. Chemical Engineering Science, 1983, 38(5): 745-763. [2] FURMAN K C, SAHINIDIS N V. Computational complexity of heat exchanger network synthesis [J]. Computers & Chemical Engineering, 2001, 25(9): 1371-1390. [3] QUESADA I, GROSSMANN I E. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems [J]. Computers & Chemical Engineering, 1992, 16(10): 937-947. [4] VISWANATHAN J, GROSSMANN I E. A combined penalty function and outer-approximation method for MINLP optimization [J]. Computers & Chemical Engineering, 1990, 14(7): 769-782. [5] RAVAGNANI M, SILVA A P, ARROYO P A, et al. Heat exchanger network synthesis and optimisation using genetic algorithm [J]. Applied Thermal Engineering, 2005, 25(7): 1003-1017. [6] YERRAMSETTY K M, MURTY C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution [J]. Computers & Chemical Engineering, 2008, 32(8): 1861-1876. [7] SILVA A P, RAVAGNANI M A S S, BISCAIA JR E C, et al. Optimal heat exchanger network synthesis using particle swarm optimization [J]. Optimization and Engineering, 2010, 11(3): 459-470. [8] XIAO Y, CUI G, PENG F, et al. An improved particle swarm optimization for precocious phenomenon in nonlinear system engineering [J]. Chinese Journal of Computational Physics, 2015. [9] HUO Z, ZHAO L, YIN H, et al. A hybrid optimization strategy for simultaneous synthesis of heat exchanger network [J]. Korean Journal of Chemical Engineering, 2012, 29(10): 1298-1309. [10] LUO X, WEN Q Y, FIEG G. A hybrid genetic algorithm for synthesis of heat exchanger networks [J]. Computers & Chemical Engineering, 2009, 33(6): 1169-1181. [11] DIPAMA J, TEYSSEDOU A, SORIN M. Synthesis of heat exchanger networks using genetic algorithms [J]. Applied Thermal Engineering, 2008, 28(14): 1763-1773. [12] LEWIN D R, WANG H, SHALEV O. A generalized method for HEN synthesis using stochastic optimization-I: General framework and MER optimal synthesis [J]. Computers & Chemical Engineering, 1998, 22(10): 1503-1513. [13] SUZUKI I, YOKOI H, KAKAZU Y. Emergence of adaptive behavior by chaotic neural networks[C]//2003 IEEE International Symposium on IEEE, 2003, 1: 151-156. [14] LI L, YANG Y, PENG H, et al. An optimization method inspired by"chaotic" ant behavior[J]. International Journal of Bifurcation and Chaos, 2006, 16(08): 2351-2364. [15] CAI J, MA X, LI Q, et al. A multi-objective chaotic ant swarm optimization for environmental/economic dispatch [J]. International Journal of Electrical Power & Energy Systems, 2010, 32(5): 337-344. [16] WAN M, WANG C, LI L, et al. Chaotic ant swarm approach for data clustering [J]. Applied Soft Computing, 2012, 12(8): 2387-2393. [17] TANG Y, CUI M, LI L, et al. Parameter identification of time-delay chaotic system using chaotic ant swarm [J]. Chaos, Solitons & Fractals, 2009, 41(4): 2097-2102. [18] YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration—II: Heat exchanger network synthesis [J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. [19] SOLÉR V, MIRAMONTES O, GOODWIN B C. Oscillations and chaos in ant societies [J]. Journal of Theoretical Biology, 1993, 161(3): 343-357. [20] AHMAD S. Heat exchanger networks: Cost tradeoffs in energy and capital [D]. University of Manchester Institute of Science and Technology (UMIST), 1985. [21] KHORASANY R M, FESANGHARY M. A novel approach for synthesis of cost-optimal heat exchanger networks [J]. Computers & Chemical Engineering, 2009, 33(8): 1363-1370. [22] PENG F, CUI G. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm [J]. Applied Thermal Engineering, 2015, 78: 136-149. [23] XIAO W, DONG H, LI X, et al. Synthesis of large-scale multi-stream heat exchanger networks based on stream pseudo temperature 1[J]. Chinese Journal of Chemical Engineering, 2006, 14(5):574-583. [24] LI J, DU J, ZHAO Z, et al. Synthesis of large-scale multi-stream heat exchanger networks using a stepwise optimization method [J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 508-517. |