[1] OBERKAMPF W L, ROY C J. Verification and validation in scientific computing[M]. New York: Cambridge University Press, 2010. [2] HELTON J, JOHNSON J. Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty[J]. Reliability Engineering and System Safety, 96: 1034-1052, 2011. [3] DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2):279-288. [4] 王瑞利, 江松. 多物理耦合非线性偏微分方程与数值解不确定度量化数学方法[J]. 中国科学: 数学, 2015, 45(6): 723-738. [5] MA Z B, ZHENG M, YIN J W, et al. Quantification of uncertainties in detonation simulation[J]. Chinese Journal of Computational Physics, 2011, 28(1), 66-74. [6] MENG X J, MA Z B, WANG R L, et al. Uncertainty quantification of temperature-and-density dependent atomic structures in radioactive opacity calculation[J]. Chinese Journal of Computational Physics, 2015, 32(3): 264-276. [7] MA Z B, YIN J W, LI H J, et al. Uncertainty quantification of numerical simulations subjected to calibration[J]. Chinese Journal of Computational Physics, 2015, 32(5): 514-522. [8] DONG H F, HONG T, ZHANG X L. Numerical simulation of deflagration to detonation transition in explosive under weak ignition[J]. Chinese Journal of Computational Physics, 2016, 33(1): 15-22. [9] SENTZ K, FERSON S. Combination of evidence in Dempster-Shafer theory report[R]. SAND Report, 2002. [10] 李艳娜, 乔秀全, 李晓峰. 基于证据理论的上下文本体建模以及不确定性推理方法[J]. 电子与信息学报, 2010, 32(8): 1806-1811. [11] 韩德强, 杨艺, 韩崇昭. DS证据理论研究进展及相关问题探讨[J]. 控制与决策, 2014, 29(1):1-11. [12] HE Y Y. Uncertainty quantification and data fusion based on Dempster-Shafer theory[D]. Florida State University, 2013. [13] DEMPSTER A P. Upper and lower probabilities induced by a multiple valued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339. [14] SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976. [15] LIU Q, WANG R L, LIN Z, et al. Uncertainty quantification for JWL EOS parameters in explosive numerical simulation[J]. Explosion and Shock Waves, 2013, 33(6): 647-654. [16] 王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学: 技术科学, 2011, 41(6): 790-798. [17] XIU D, KARNIADKIS W. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM J Sci Comput, 24:619-644, 2002. [18] CAMERON R, MARTIN W. The orthogonal development of nonlinear functional in series of Fourier-Hermite functional[J]. Ann Math, 48(1947): 385-398. [19] 水鸿寿. 一维流体力学差分方法[M].北京:国防工业出版社, 1998. |