[1] HUTZLER N R, LU H, DOYLE J M. The buffer gas beam:An intense, cold, and slow source for atoms and molecules[J]. Chemical Reviews, 2012, 112(9):4803-4827. [2] JOHNSON C,NEWMAN B,BRAHMS N, et al. Zeeman relaxation of cold atomic iron and nickel in collisions with 3He[J]. Physical Review A, 2010, 81(6):062706(1-9). [3] LI Hongzheng, LIU Xinguo, WANG Yanjie, et al. Stereodynamics study of Li+HF→LiF+H reaction at low energies[J]. Chinese J Comput Phys, 2016,33(1):83-90. [4] DOYLE J M, FRIEDRICH B, KIM J, et al. Buffer-gas loading of atoms and molecules into a magnetic trap[J]. Physical Review A, 1995, 52(4):R2515-2518. [5] DULIEU O, GABBANINI C. The formation and interactions of cold and ultracold molecules:New challenges for interdisciplinary physics[J]. Reports on Progress in Physics, 2009, 72(8):086401. [6] TONG X, WINNEY A H, WILLITSCH S. Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization[J]. Physical Review Letters, 2010, 105(14):143001(1-4). [7] TACCONI M, BODO E, GIANTURCO F A. Interaction of NH (X3Σ-) with Rb and Cs atoms:Similarities and differences from an highly correlated ab initio study[J]. Theoretical Chemistry Accounts, 2007, 117(5-6):649-662. [8] TACCONI M, GONZALEZ-SANCHEZ L, BODO E, et al. Collisions of NH (Σ3-) with Rb and Cs at ultralow energies:A quantum study of rotational cooling efficiency[J]. Physical Review A, 2007, 76(3):032702(1-9). [9] ŻUCHOWSKI P S, HUTSON J M. Prospects for producing ultracold NH3 molecules by sympathetic cooling:A survey of interaction potentials[J]. Physical Review A, 2008, 78(2):022701(1-9). [10] BLOKLAND J H, RIEDEL J, PUTZKE S, et al. Producing translationally cold, ground-state CO molecules[J]. The Journal of Chemical Physics, 2011, 135(11):114201(1-6). [11] MAGNO W C, CAVASSO FILHO R L, CRUZ F C. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms[J]. Physical Review A, 2003, 67(4):043407(1-7). [12] MALOSSI N, DAMKJæR S, HANSEN P L, et al. Two-photon cooling of magnesium atoms[J]. Physical Review A, 2005, 72(5):051403(1-4). [13] WERNER H J, KNOWLES P J, LINDH R, et al. MOLPRO, version 2006.1, a package of ab initio programs[CP/OL]. http://seewww.molpro.net,Cardiff. [14] BOYS S F, BERNARDI F D. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics, 1970, 19(4):553-566. [15] BUKOWSKI R, SADLEJ J, JEZIORSKI B, et al. Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory[J]. The Journal of Chemical Physics, 1999, 110(8):3785-3803. [16] TANG K T, TOENNIES J P. An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients[J]. The Journal of Chemical Physics, 1984, 80(8):3726-3741. [17] FENG E Y, SUN C Y, YU C H, SHAO, et al. Ab initio potential energy surface and bound states for the Kr-OCS complex[J]. The Journal of Chemical Physics, 2011, 135(12):124301(1-6). [18] HAN Y L, LI Z, WANG J H, et al. Potential energy surface and spectra prediction for the Mg-CO complex[J]. Acta Phys Sin, 2013, 62(9):093101(1-6). [19] FENG E Y, ZHANG Y, WANG Z Q, et al. Rovibrational structure of the Xe-CO complex based on a new three-dimensional ab initio potential[J]. The Journal of Chemical Physics, 2009, 130(12):124311(1-7). [20] FENG E Y, HUANG W Y, CUI Z F, et al. Predicted rovibrational structure of the Ne-LiH complex based on an ab initio potential[J]. Journal of Molecular Structure:THEOCHEM, 2005, 724(1):195-202. [21] Standard Reference Database[DB/OL].http://webbook.nist.gov/chemistry/. |