CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 2019, Vol. 36 ›› Issue (3): 305-316.DOI: 10.19596/j.cnki.1001-246x.7866
Previous Articles Next Articles
CAO Yanchuang1, XIAO Jinyou2, WEN Lihua2, WANG Zheng1
Received:
2018-03-23
Revised:
2018-04-19
Online:
2019-05-25
Published:
2019-05-25
CLC Number:
CAO Yanchuang, XIAO Jinyou, WEN Lihua, WANG Zheng. Fast Directional Boundary Element Method for Large Scale Wideband Elastodynamic Analysis[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 305-316.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.7866
[1] CHATTERJEE J, MA F, HENRY D P, et al. Two- and three-dimensional transient heat conduction and thermoelastic analyses by BEM via efficient time convolution[J]. Computer Methods in Applied Mechanics and Engineering., 2007, 196(29-30):2828-2838. [2] WU H J, LIU Y J, JIANG W K. A fast multipole boundary element method for 3D multi-domain acoustic scattering problems based on the Burton-Miller formulation[J]. Engineering Analysis with Boundary Elements, 2012, 36(5):779-788. [3] WU H J, LIU Y J, JIANG W K, et al. A fast multipole boundary element method for three-dimensional half-space acoustic wave problems over an impedance plane[J]. International Journal of Computational Methods, 2015, 12(1):1350090. [4] HUANG S, XIAO J Y, HU Y C, et al. GPU-accelerated boundary element method for Burton-Miller equation in acoustics[J]. Chinese Journal of Computational Physics, 2011, 28(4):481-487. [5] ZHANG R, WEN L H, XIAO J Y. GPU-accelerated boundary element method for large-scale problems in acoustics[J]. Chinese Journal of Computational Physics, 2015, 32(3):299-309. [6] YAN Z Y, GAO X W. The development of the pFFT accelerated BEM for 3-D acoustic scattering problems based on the Burton and Miller's integral formulation[J]. Engineering Analysis with Boundary Elements, 2013, 37(2):409-418. [7] SHEN L, LIU Y. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation[J]. Computational Mechanics, 2007, 40(3):461-472. [8] MOLINET F, STÈVE H, ADAM J P. State of the art in computational methods for the prediction of radar cross-sections and antenna-platform interactions[J]. C R Physique, 2005, 6(6):626-639. [9] TONG Meisong, CHEW Wengcho. Multilevel fast multipole acceleration in the Nyström discretization of surface electromagnetic integral equations for composite objects[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(10):3411-3416. [10] WILKERSON S A. Boundary integral technique for explosion bubble collapse analysis[R]. Army Research Laboratory, 1993, ARL-TR-184. [11] SOLTANI N, ESFAHANIAN V, HADDADPOUR H, et al. Unsteady supersonic aerodynamics based on BEM, including thickness effects in aeroelastic analysis[J]. Journal of Fluids and Structures, 2004, 19(6):801-813. [12] AYDIN M, FENNER R T. Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 2001, 37(1):45-64. [13] CHAILLAT S, BONNET M. Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics[J]. Wave Motion, 2013, 50(7):1090-1104. [14] GREENGARD L, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2):325-348. [15] GREENGARD L, ROKHLIN V. A new version of the fast multipole method for the Laplace equation in three dimensions[J]. Acta Numerical, 1997, 6(1):229-269. [16] DARVE E. The fast multipole method:Numerical implementation[J]. Journal of Computational Physics, 2000, 160(1):195-240 [17] YING L, BIROS G, ZORIN D. A kernel-independent adaptive fast multipole algorithm in two and three dimensions[J]. Journal of Computational Physics, 2004, 196(2):591-626. [18] FONG W, DARVE E. The black-box fast multipole method[J]. Journal of Computational Physics, 2009, 228(23):8712-8725. [19] HACKBUSCH W. A sparse matrix arithmetic based on H-matrices Part I:Introduction to H-matrices[J]. Computing, 1999, 62(2):89-108. [20] BEBENDORF M. Approximation of boundary element matrices[J]. Numer Math, 2000, 86(4):565-589. [21] BEBENDORF M, RJASANOW S. Adaptive low-rank approximation of collocation matrices[J]. Computing, 2003, 70(1):1-24. [22] BEYLKIN G, COIFMAN R, ROKHLIN V. Fast wavelet transforms and numerical algorithms I[J]. Communications on Pure and Applied Mathematics, 1991, 44(2):141-183. [23] TAUSCH J. A variable order wavelet method for the sparse representation of layer potentials in the non-standard form[J]. Journal of Numerical Mathematics, 2004, 12(3):233-254. [24] HAWKINS S C, CHEN K, HARRIS P J. On the influence of the wavenumber on compression in a wavelet boundary element method for the Helmholtz equation[J]. International Journal of Numerical Analysis and Modeling, 2007, 4(1):48-62. [25] CHENG H, CRUTCHFIELD W Y, GIMBUTAS Z, et al. A wideband fast multipole method for the Helmholtz equation in three dimensions[J]. Journal of Computational Physics, 2006, 216(1):300-325. [26] GUMEROV N A, DURAISWAMI R. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation[J]. Journal of the Acoustical Society of America, 2009, 125(1):191-205. [27] ZHENG C J, MATSUMOTO T, TAKAHASHI T, et al. A wideband fast multipole boundary element method for three dimensional acoustic shape sensitivity analysis based on direct differentiation method[J]. Engineering Analysis with Boundary Elements, 2012, 36(3):361-371. [28] TONG M, CHEW W. Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects[J]. Journal of Computational Physics, 2009, 228(3):921-932. [29] MESSNER M, SCHANZ M, DARVE E. Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation[J]. Journal of Computational Physics, 2012, 231(4):1175-1196. [30] BEBENDORF M, KUSKE C, VENN R. Wideband nested cross approximation for Helmholtz problems[R]. SFB 611 Preprint, 2012:536. [31] ENGQUIST B, YING L. Fast directional multilevel algorithms for oscillatory kernels[J]. SIAM Journal on Scientific Computing, 2007, 29(4):1710-1737. [32] ENGQUIST B, YING L. Fast directional algorithms for the Helmholtz kernel[J]. Journal of Computational and Applied Mathematics, 2010, 234(6):1851-1859. [33] CAO Y, WEN L, XIAO J, et al. A fast directional BEM for large-scale acoustic problems based on the Burton-Miller formulation[J]. Engineering Analysis with Boundary Elements, 2015, 50:47-58. [34] CHAILLAT S, BONNET M, SEMBLAT J-F. A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49-50):4233-4249. [35] CHAILLAT S, BONNET M. A new fast multipole formulation for the elastodynamic half-space Green's tensor[J]. Journal of Computational Physics, 2014, 258:787-808. [36] TSUJI P H. Fast algorithms for frequency-domain wave propagation[D]. The University of Texas at Austin, PhD thesis, 2012. [37] CAO Y, RONG J, WEN L, et al. A kernel-independent fast multipole BEM for large-scale elastodynamic analysis[J]. Engineering Computations, 2015, 32(8):2391-2418. [38] SANZ J A, BONNET M, DOMINGUEZ J. Fast multipole method applied to 3-D frequency domain elastodynamics[J]. Engineering Analysis with Boundary Elements, 2008, 32(10):787-795. [39] CANINO L F, OTTUSCH J J, STALZER M A, et al. Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization[J]. Journal of Computational Physics, 1998, 146(2):627-663. [40] RONG J, WEN L, XIAO J. Efficiency improvement of the polar coordinate transformation for evaluating BEM singular integrals on curved elements[J]. Engineering Analysis with Boundary Elements, 38(1):83-93. [41] LUBICH C. Convolution quadrature and discretized operational calculus I[J]. Numerische Mathematik, 1988, 52(2):129-145. [42] BETCKE T, SALLES N, SMIGAJ W. Solution of time-domain problems using convolution quadrature methods and BEM++[C]. International Conference on Boundary Element and Meshless Techniques, 2014. [43] SCHANZ M, YE W, XIAO J. Comparison of the convolution quadrature method and enhanced inverse FFT with application in elastodynamic boundary element method[J]. Computational Mechanics, 2016, 57(4):523-536. [44] BANJAI L. Multistep and multistage convolution quadrature for the wave equation:Algorithms and experiments[J]. SIAM Journal on Scientific Computing, 2010, 32(5):2946-2994. |
[1] | ZHOU Huanlin, YAN Jun, YU Bo, CHEN Haolong. Identification of Thermal Conductivity for Transient Heat Conduction Problems by Improved Cuckoo Search Algorithm [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 212-220. |
[2] | WANG Xianhui, ZHENG Xingshuai, QIAO Hui, ZHANG Xiaoming. Analytical Study of Hypersinglar Integral Equations with Constant Element for 2D Helmholtz Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(6): 666-672. |
[3] | WANG Xianhui, QIAO Hui, ZHANG Xiaoming, GU Jinliang. An Isogeometric Boundary Element Method for 3D Helmholtz Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(1): 61-66. |
[4] | GE Renyu, NIU Zhongrong, CHENG Changzheng, HU Zongjun, XUE Weiwei. Propagation Analysis of Two-dimensional Linear Elastic Crack with Boundary Element Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(3): 310-320. |
[5] | SUN Shili, SUN Yilong, HU Jingzhong, HU Jian. Free Surface Effect and Spike of a Cylinder Piercing Water Surface [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(2): 187-193. |
[6] | HUANG Shuo, XIAO Jinyou, HU Yucai, WANG Tao. GPU-accelerated Boundary Element Method for Burton-Miller Equation in Acoustics [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(4): 481-487. |
[7] | GU Yan, ZHANG Yaoming, LI Gongsheng. Boundary Element Analysis of Thin-walled Structures in Elasticity Problems with Exact Geometrical Representation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(3): 397-403. |
[8] | YAN Hui, XIAO Changhan, ZHANG Zhaoyang, ZHU Xingle. Iterative Method for Continuation of Three-component Magnetic Field [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 27(5): 705-710. |
[9] | CHENG Changzheng, NIU Zhongrong, ZHOU Huanlin, YANG Zhiyong. Evaluation of Nearly Hyper-singular Integrals in Thermal Stress Boundary Element Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(1): 113-118. |
[10] | WANG Xueren, JI Zhenlin. Boundary Element Analysis of Four-pole Parameters and Transmission Loss of Silencers with Flow [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(6): 717-724. |
[11] | HE Zeng, LÜ Junchao, DAI Chenghao. A Fast Multiple Boundary Element Method for Two-dimensional Electrostatic Field with Arbitrary Plane Charge Distribution [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(4): 433-438. |
[12] | LI Yasha, WANG Zezhong, LU Binxian. Analytical Integrals in the Linear Interpolation BEM for 3-D Electrostatic Fields [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(1): 59-64. |
[13] | YIN Hai-rong, GONG Yu-bin, WEI Yan-yu, HUANG Min-zhi, LU Zhi-gang, WANG Wen-xiang. Virtual Boundary Method and Electron Trace in a Power Electron Gun [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 23(6): 647-654. |
[14] | WU Zheng-peng, YU De-hao. The Coupling of Natural Boundary Element and Finite Element for Semilinear Boundary Value Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 21(6): 477-483. |
[15] | XIANG Kai-li, GUO Jian-chun, LI Yun. THE BOUNDARY ELEMENT METHOD OF PRESSURE BEHAVIOR MODEL OF LATERAL DRILLING AND FORMATION DAMAGE EVALUATION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 17(5): 579-587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.