[1] AMER M, WANG C C. Review of defrosting methods[J]. Renewable and Sustainable Energy Reviews, 2017, 73:53-74. [2] ZHANG Y, KLITTICH M R, GAO M, et al. Delaying frost formation by controlling surface chemistry of carbon nanotube-coated steel surfaces[J]. ACS Applied Materials and Interfaces, 2017, 9(7):6512-6519. [3] HUANG L Y. A study on the effects of cold surface characteristics on frost formation[D]. Beijing:Beijing University of Technology, 2011:2-5. [4] WU B. Research on the effecting of surface micro-structure to the frost performance[D]. Guangzhou:Guangzhou University, 2014:1-4. [5] DONG Y W. An experimental study of frost deposition phenomena on cryogenic surfaces[D]. Beijing:Beijing University of Technology, 2016:1-5. [6] LIU Z L, HUANG L Y, GOU Y J, et al. A review on frost formation and anti-frosting technology[J]. Journal of Refrigeration, 2010, 31(4):1-6. [7] ZHANG J W, JIANG Y, SUN Y Y, et al. The frosting characteristics on the cryogenic wall surface with different surface structures and heat transfer conditions[J]. Cryo & Supercond, 2017, 45(9):1-6+92. [8] LIANG C H, WANG F, LV Y, et al. Experimental study on effect of surface characteristic of fin on frost formation[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(4):745-750. [9] GOU Y J, LIU Z L, LIU Y M, et al. The study of frost formation under magnetic field[J]. Journal of Engineering Thermophysics, 2009, 30(3):465-467. [10] WU X M, JIANG H, MO S J, et al. Numerical simulation of frost formation in diffusion limited aggregation[J]. Journal of Engineering Thermophysics, 2010, 31(12):2073-2075. [11] CHEN S P, YAO S T, XIE F S, et al. Numerical simulation on frost of cryogenic finned-tube vaporizer based on fractal theory[J]. Journal of Refrigeration, 2012, 33(4):43-47. [12] GU B, REN N, LIU X C. Three dimensional numerical simulation of frost formation on finned tube heat exchanger[J]. Journal of Shanghai Jiao Tong University, 2008, 3:441-444. [13] WU J Y, CHEN J P. Numerical analysis and experiment of frosting quality of finned-tube evaporators in low temperature condition[J]. Cryogenics, 2008, 1:33-37. [14] LIU X C. Numerical simulation on heat and mass transfer of frost formation on finned tube heat exchanger[D]. Shanghai:Shanghai Jiao Tong University, 2007:9-38. [15] XING Z. Frost growth characteristics of the finned-tube heat exchanger[D]. Tianjin:Tianjin University of Commerce, 2016:13-19. [16] WANG H J. Numerical model and methods of frost local distribution on plate-tube heat exchangers[D]. Changsha:Hunan University, 2010:44-61. [17] MA Q. Experimental and numerical investigations of frost formation with low temperature and high relative humidity[D]. Beijing:Tsinghua University, 2015:36-63. [18] CHEN X H, CHEN H, WANG G J. Numerical simulation of frost characterist on refrigeration system evaporator[J]. Journal of Chongqing University(Natural Science Edition), 2005,10:46-48. [19] CUI J, LI W Z, LIU Y, et al.A new time-and space-dependent model for predicting frost formation[J]. Applied Thermal Engineering, 2011, 31(4):447-457. [20] GUO Z L, ZHENG C G. Theory and applications of lattice Boltzmann method[M]. Beijing:Science Press, 2009:46-55. [21] WANG T T, GAO Q, CHEN J, et al. Lattice Boltzmann simulation of mixed convection in an enclosure filled with porous medium[J]. Chinese Journal of Computational Physics, 2017, 34(1):39-46. [22] WANG H M, ZHAO H B, ZHENG C G. Two-way coupling lattice Boltzmann model for gas-particle turbulent flows[J]. Chinese Journal of Computational Physics, 2013, 30(1):19-26. [23] LI B B, WANG T T, CHEN J, et al. Lattice Boltzmann study of nonlinear characteristics of double diffusive mixed convection in an enclosure[J]. Chinese Journal of Computational Physics, 2016, 33(2):156-162. [24] GAO D Y, CHEN Z Q. Lattice Boltzmann method for heat transfer in melting with natural convection[J]. Chinese Journal of Computational Physics, 2011, 28(3):361-367. [25] YANG J. Experimental study on restraint of frost formation and simulation and forecast of the process[D]. Nanjing:Southeast University, 2006:38-42. [26] ZHAO X, DONG B, LI W Z, et al. An improved enthalpy-based lattice Boltzmann model for heat and mass transfer of the freezing process[J]. Applied Thermal Engineering, 2016,111:1477-1486. [27] JIAUNG W S, HO J R, KUO C P. Lattice Boltzmann method for the heat conduction problem with phase change[J]. Numer Heat Transf Part B:Fundamentals, 2001, 39(2):167-187. |