CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 2020, Vol. 37 ›› Issue (2): 140-152.DOI: 10.19596/j.cnki.1001-246x.8031
Previous Articles Next Articles
Received:
2018-12-23
Revised:
2019-04-23
Online:
2020-03-25
Published:
2020-03-25
CLC Number:
LIU Yan, MAO Dekang. An ADRS Approximated Riemann Solver in Compatible Lagrangian Method[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 140-152.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8031
[1] LOUBERE R, SHASHKOV M J. A subcell remapping method on staggered polygonal grids for arbitrary Lagrangian-Eulerian method[J]. J Comput Phys, 2005, 209(1):105-138. [2] DUCKOWICZ J K, MELTZ B J. Vorticity errors in multidimensional Lagrangian codes[J]. J Comput Phys, 1992, 99(1):115-134. [3] ADDESSION F L, BAUMGARDNER J R, DUKOWICZ J K, et al. CAVEAT:A computer code for fluid dynamics problem with large distortion and internal slip[R]. Los Alamos Report LA-10613-MS, 1992. [4] SUN Y T, JIA Z P, YU M, et al. Second order Lagrangian scheme based on characteristics theory for two-dimensional compressible flows[J]. Chinese Journal of Computational Physics, 2012, 29(6):791-798. [5] SUN Y T, REN Y X, YU M, et al. A finite volume method for 2D Lagrangian hydrodynamics based on characteristics theory[J]. Chinese Journal of Computational Physics, 2011, 28(1):19-26. [6] SUN S K, SHEN L J, SHEN Z J. A Lagrangian finite point method for one-dimensional compressible multifluids with tracking interface algorithm[J]. Chinese Journal of Computational Physics, 2010, 27:317-325. [7] MAIRE P H, ABGRALL R, BREIL J, et al. A cell-centered Lagrangian scheme for multidimensional compressible flow problems[J]. SIAM J Sci Comput, 2007, 29(4):1781-1824. [8] MAIRE P H. A high order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes[J]. J Comput Phys, 2009, 228(7):2391-425. [9] 刘妍, 田保林, 申卫东, 等. MFCAV近似Riemann解在新型拉氏方法中的推广应用[J]. 力学学报, 2012, 44(2):259-268. [10] 李德元, 徐国荣, 水鸿寿, 等. 二维非定常流体力学数值方法[M]. 北京:科学出版社, 1987. [11] TORO E F. Riemann solvers and numerical methods for fluid dynamics[M]. Springer-Verlag Berlin, Heidelberg, 2009. [12] WALTZ J, CANFIELD T R, MORGAN N R, et al. Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions[J]. Comput Fluids, 2013, 81:57-67. [13] NOH W F. Errors for calculations of strong shocks using artificial viscosity and artificial heat flux[J]. J Comput Phys, 1987, 72(1):78-120. |
[1] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[2] | Yaoli FANG, Yi WANG. An IMEX Method for 2-D Radiation Hydrodynamics [J]. Chinese Journal of Computational Physics, 2021, 38(4): 401-417. |
[3] | XU Qianlong, LI Ye. Algorithm for Three-dimensional Free-surface Green Function in Frequency Domain at Finite Water Depth and Its Derivatives [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 35-46. |
[4] | ZHAO Fei, SHENG Zhiqiang, YUAN Guangwei. A Positivity-preserving Finite Volume Scheme Based on Second-order Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 379-392. |
[5] | XU Xiao, GAO Zhiming, DAI Zihuan. 3D Lagrangian Methods for Ideal Magnetohydrodynamics on Unstructured Meshes [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 403-412. |
[6] | ZHANG Lin, GE Yongbin. High-order Fully Implicit Scheme and Multigrid Method for Two-dimensional Semilinear Diffusion Reaction Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 307-319. |
[7] | DING Qi, SHANG Yueqiang. Parallel Finite Element Algorithms Based on Two-grid Discretization for Time-dependent Navier-Stokes Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 10-18. |
[8] | LIU Quan, NI Guoxi, NIU Xiao, HU Jun. A Semi-Lagrangian Conservative Scheme for Vlasov Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 19-25. |
[9] | ZHAO Guozhong, YU Xijun, GUO Hongping, DONG Ziming. A Local Discontinuous Petrov-Galerkin Method for Partial Differential Equations with High Order Derivatives [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(5): 517-532. |
[10] | KONG Linghai, KONG Lingbo, XU Haibo, JIA Qinggang. A Higher Order Regularization Approach for Object Reconstruction with Mixed Laplace-Gaussian Likelihood [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 280-290. |
[11] | GUO Zitao, FENG Renzhong. A High Order Accuracy Corrected Hermite-ENO Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(2): 141-152. |
[12] | DAI Zihuan. A Sound Speed-Based Rezoning Strategy for ALE Methods [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 15-24. |
[13] | XU Chengjun, XU Shengli. Sufficient Conditions and Numerical Validations for Smooth Functions in Particle Approximation of SPH Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 25-38. |
[14] | FU Fangfang, KONG Linghua, WANG Lan, XU Yuan, ZENG Zhankuan. High Order Compact Splitting Multisymplectic Schemes for 1D Gross-Pitaevskii Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 657-667. |
[15] | ZHANG Shouhui, LIANG Dong. A Strang-type Alternating Segment Domain Decomposition Method for Two-dimensional Parabolic Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(4): 413-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.