Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (3): 324-332.DOI: 10.19596/j.cnki.1001-246x.8262
• Research Reports • Previous Articles Next Articles
Jia ZHANG1(), Shiqing CHENG1, Yang ZENG2,3, Man ZHANG1, Haiyang YU1
Received:
2020-08-24
Online:
2021-05-25
Published:
2021-09-30
CLC Number:
Jia ZHANG, Shiqing CHENG, Yang ZENG, Man ZHANG, Haiyang YU. Applicability Exploration of Superposition Principle for Pressure Transient Analysis in Polymer-flooding System[J]. Chinese Journal of Computational Physics, 2021, 38(3): 324-332.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8262
Fig.3 Schematic of shut-in pressure drawdown testing of an injection well and superposition principle (a) injecting and shut-in procedure of a polymer injection well; (b) superposition principle and virtual production well
基础参数 | 值 |
初始地层压力/MPa | 20 |
注聚浓度/(g·L-1) | 0.5 |
井筒半径/m | 0.1 |
井储系数/(m3·MPa-1) | 0.1 |
表皮系数 | 0.1 |
渗透率/μm2 | 0.1 |
孔隙度 | 0.3 |
岩石压缩系数/MPa-1 | 0.001 |
初始含水饱和度 | 0.5 |
初始含油饱和度 | 0.5 |
原油黏度/(mPa·s) | 0.9 |
原油压缩系数/MPa-1 | 0.001 |
原油体积系数 | 0.9 |
水黏度/(mPa·s) | 0.9 |
水压缩系数/MPa-1 | 0.000 2 |
水体积系数 | 1 |
Table 1 Basic parameters of the reservoir
基础参数 | 值 |
初始地层压力/MPa | 20 |
注聚浓度/(g·L-1) | 0.5 |
井筒半径/m | 0.1 |
井储系数/(m3·MPa-1) | 0.1 |
表皮系数 | 0.1 |
渗透率/μm2 | 0.1 |
孔隙度 | 0.3 |
岩石压缩系数/MPa-1 | 0.001 |
初始含水饱和度 | 0.5 |
初始含油饱和度 | 0.5 |
原油黏度/(mPa·s) | 0.9 |
原油压缩系数/MPa-1 | 0.001 |
原油体积系数 | 0.9 |
水黏度/(mPa·s) | 0.9 |
水压缩系数/MPa-1 | 0.000 2 |
水体积系数 | 1 |
井储系数/(m3·MPa-1) | 表皮系数 | 复合半径/m | 内区渗透率/(10-3μm2) | 外区渗透率/(10-3μm2) | |
数值解 | 0.34 | -3.10 | 15.20 | 15.25 | 1.01 |
叠加原理 | 0.31 | -1.50 | 15.06 | 5.12 | 0.71 |
Table 2 Interpretation results of pressure drawdown well testing
井储系数/(m3·MPa-1) | 表皮系数 | 复合半径/m | 内区渗透率/(10-3μm2) | 外区渗透率/(10-3μm2) | |
数值解 | 0.34 | -3.10 | 15.20 | 15.25 | 1.01 |
叠加原理 | 0.31 | -1.50 | 15.06 | 5.12 | 0.71 |
1 | KAZEMI H. Pressure transient analysis of naturally fractured reservoirs[J]. Journal of Petroleum Technology, 1968, 20 (9): 989- &. |
2 | FANG S D, CHENG L S, XIN Y N, et al. Linear element method for multi-angle fractured horizontal well in anisotropic reservoir[J]. Chinese Journal of Computational Physics, 2015, 32 (5): 595- 602. |
3 | SETH P, MANCHANDA R, ZHENG S, et al. Poroelastic pressure transient analysis: A new method for interpretation of pressure communication between wells during hydraulic fracturing[C]. SPE Hydraulic Fracturing Technology Conference and Exhibition, Society of Petroleum Engineers, 2019. |
4 | DING M C, WU M L, LI X, et al. Characteristics of transient pressure for multiple fractured horizontal wells in fractal fractured shale gas reservoirs[J]. Chinese Journal of Computational Physics, 2019, 36 (5): 559- 568. |
5 | JI A Z, WANG Y F, ZHANG G S. Transient pressure for a fractured well with asymmetric fracture[J]. Chinese Journal of Computational Physics, 2019, 36 (1): 47- 52. |
6 | AFAGWU C, ABUBAKAR I, KALAM S, et al. Pressure-transient analysis in shale gas reservoirs: A review[J]. Journal of Natural Gas Science and Engineering, 2020, 103319. |
7 | KONWAR L, ALOWAINATI E, NEMMAWI N, et al. Understanding Mauddud waterflood performance in a heterogeneous carbonate reservoir with surveillance data and ensemble of analytical tools[C]. Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers, 2020. |
8 | XU Y D. An interpretation method with "well-cave-crack" model of dissolves reservoir considering gravity factors[J]. Chinese Journal of Computational Physics, 2020, 37 (2): 189- 197. |
9 |
POOLLEN H K V, JARGON J R. Steady-state and unsteady-state flow of non-Newtonian fluids through porous media[J]. Society of Petroleum Engineers Journal, 1969, 9 (1): 80- 88.
DOI |
10 |
IKOKU C U. Transient flow of non-Newtonian power-law fluids in porous media[J]. Society of Petroleum Engineers Journal, 1979, 19 (3): 164- 174.
DOI |
11 |
ODEH A S, YANG H T. Flow of non-Newtonian power law fluids through porous media[J]. Society of Petroleum Engineers Journal, 1979, 19 (3): 155- 163.
DOI |
12 | LUND O, IKOKU C U. Pressure transient behavior of non-Newtonian/Newtonian fluid composite reservoirs[J]. SPE Journal, 1981, 21 (2): 271- 280. |
13 |
VONGVUTHIPORNCHAI S, RAGHAVAN R. Well test analysis of data dominated by storage and skin: Non-Newtonian power-law fluids[J]. SPE Formation Evaluation, 1987, 2 (4): 618- 628.
DOI |
14 | MAHANI H, SOROP T, VAN DEN HOEK P, et al. Injection fall-off analysis of polymer flooding EOR[C]. SPE Reservoir Characterisation and Simulation Conference and Exhibition, Society of Petroleum Engineers, 2011. |
15 | 刘明明. 基于分形理论的聚合物驱试井分析[D]. 东营: 中国石油大学(华东), 2015. |
16 | 贾智淳. 全隐式化学驱油藏教值模拟研究[D]. 合肥: 中国科学技术大学, 2016. |
17 | KAMAL M, TIAN C, SULEEN S. Use of transient tests to monitor progress of flooding in IOR/EOR operations[C]. SPE Technical Conference and Exhibition, 2016. |
18 |
朱常玉, 程时清, 唐恩高, 等. 聚驱后水驱的试井解释方法[J]. 油气井测试, 2017, 26 (3): 15- 18.
DOI |
19 | OMOSEBI O A, AKABOGU A K. Application of the Galerkin's finite element method to the flow of power-law non-Newtonian fluids through porous media[C]. SPE Western Regional Meeting, 2017. |
20 | 刘文涛, 张德富, 程宏杰, 等. 聚合物驱牛顿-非牛顿-牛顿三区复合试井模型[J]. 油气藏评价与开发, 2019, 9 (4): 26- 30. |
21 |
METER D M, BIRD R B. Tube flow of non-Newtonian polymer solutions PART I: Laminar flow and rheological models[J]. Aiche Journal, 1964, 10 (6): 878- 881.
DOI |
22 | GUO W, CHENG J, YAO Y, et al. Commercial pilot test of polymer flooding in Daqing oil field[C]. SPE/DOE Improved Oil Recovery Symposium, Society of Petroleum Engineers, 2000. |
23 | 方道斌, 聂贵权. 水解聚丙烯酰胺盐水溶液表观黏度的数学模拟(III)——表观黏度与剪切速率的通用关系式[J]. 化工学报, 1997, 48 (1): 80- 84. |
24 |
PEACEMAN D W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability[J]. Society of Petroleum Engineers Journal, 1983, 23 (3): 531- 543.
DOI |
25 | LIE K A. An introduction to reservoir simulation using MATLAB/GNU Octave: User guide for the MATLAB reservoir simulation toolbox (MRST)[M]. Cambridge University Press, 2019. |
26 |
LIE K A, KROGSTAD S, LIGAARDEN I S, et al. Open-source MATLAB implementation of consistent discretisations on complex grids[J]. Computational Geosciences, 2012, 16 (2): 297- 322.
DOI |
[1] | XIE Chiyu, ZHANG Jianying, WANG Moran. Lattice Boltzmann Modeling of Non-Newtonian Multiphase Fluid Displacement [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(2): 147-155. |
[2] | LI Junjian, JIANG Hanqiao, LIU Tongjing. Tracer Transport in Intraformational Water Channeling Reservoir [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 27(1): 45-50. |
[3] | HOU Yingmin, TONG Dengke, ZHANG Huaqing. Dynamic Characteristics of Nonsteady Flows with Phase Redistribution in Double Porous Media and Fractal Reservoir [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(6): 865-871. |
[4] | XU Kan, LIU Minghou, LIU Dong, CHEN Yiliang. Simulation of Multiphase Flows in Microscale Hemodialysis [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(1): 49-56. |
[5] | ZHANG Xiao-guang, YANG Bo-jun, YU Zhong-yuan. Discussion on the Choice of the Fourier Transformation Form in Numerical Solutions of Nonlinear Schrödinger Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 20(3): 267-272. |
[6] | HU Zhan, JIN Ming-xing, LIU Hang, ZHANG Lin-iin, DING Da-jun. Application of a Simple Calculation Method of Ion Optical System to Reflectron Time-of-flight Mass Spectrometer [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 20(1): 44-50. |
[7] | TONG Deng-ke, CAI Lang-lang. DYNAMICAL CHARACTERISTICS OF DOUBLE POROSITY/DOUBLE PERMEABILITY MODEL INCLUDING THE EFFECT OF QUADRATIC GRADIENT TERM [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 19(2): 177-182. |
[8] | Li Guangzheng. NUMERICAL INVESTIGATION OF NATURAL CONVECTION FOR NON-NEWTONIAN FLUIDS OVER A VERTICAL FLAT PLATE [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 15(1): 19-28. |
[9] | Wang Baoguo, Wangdong, Wu Honge. NUMERICAL SIMULATION OF OLDROYD B FLUID FLOWS THROUGH ABRUPT CONTRACTIONS [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 14(2): 171-178. |
[10] | Feng Tinggui, Lai Dongxian. A SIMPLIFIED NUMERICAL METHOD fOR CALCULATING 3-D RADIATION FIELD OF CAVITY [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 13(1): 50-56. |
[11] | Long Yongxing. THE SOLUTION OF SINGULAR BOUNDARY VALUE PROBLEMS IN TEARING MODE [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 12(4): 541-546. |
[12] | Duan Qing sheng, Qin Cheng sen. NUMERICAL SOLUTION FOR CRITICAL PARAMETER OF THERMAL EXPLOSION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 11(2): 219-224. |
[13] | Zhang Yuwen, Chen Zhongqi, Wang Qijie, Wu Qingjin. NUMERICAL SOLUTION OF MELTING IN A RECTANGULAR ENCLOSURE WITH DISCRETE HEAT SOURCES [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 11(1): 9-16. |
[14] | Niu Zhongrong. INTERPOLATING MATRIX METHOD FOR MULTI-POINT BVPS AND ITS ERROR ANALYSIS [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 10(3): 336-344. |
[15] | Lü Tongxing, Wang Xiaohong. A NUMERICAL SOLUTION OF THE MATRIX EQUATION AXB-CXD=E [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 9(4): 451-454. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.