Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (4): 456-464.DOI: 10.19596/j.cnki.1001-246x.8295
• Research Reports • Previous Articles Next Articles
Zhankang YANG(), Yi NIU(
)
Received:
2020-10-29
Online:
2021-07-25
Published:
2021-12-21
Contact:
Yi NIU
CLC Number:
Zhankang YANG, Yi NIU. Influence of Temperature, Enclosure and Ventilation on Radon Concentration Distribution in a Blind Roadway[J]. Chinese Journal of Computational Physics, 2021, 38(4): 456-464.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8295
材料 | 密度/(kg·m-3) | 摩尔质量/(g·mol-1) | 导热系数/(w·m-1·K) | 粘性系数/(pa·s)[ | 比热容/(J·kg-1·K) |
空气 | 1.225 | 29 | 0.024 2 | 1.789 8×10-5 | 1 006.43 |
氡 | 9.73 | 222 | 0.003 6 | 1.8×10-5 | 96.33 |
Table 1 Physical parameters of materials in the model
材料 | 密度/(kg·m-3) | 摩尔质量/(g·mol-1) | 导热系数/(w·m-1·K) | 粘性系数/(pa·s)[ | 比热容/(J·kg-1·K) |
空气 | 1.225 | 29 | 0.024 2 | 1.789 8×10-5 | 1 006.43 |
氡 | 9.73 | 222 | 0.003 6 | 1.8×10-5 | 96.33 |
工况 | 风机送风口A | 巷道入口 | 巷道内壁 | 温度/℃ | 巷道内壁氡析出率/(Bq·s-1·m-2) | 氡的扩散系数/(cm2·s-1) |
Case 1 | 为速度入口,风速为8 m·s-1,氡的组分设置为0,湍动能为3.57 %,特征长度为0.3 m | 采用自然出流出口边界条件 | 设置为壁面,且壁面无滑移,绝热 | 20 | 0.140 1 | 0.032 8 |
Case 2 | 25 | 0.184 1 | 0.045 3 | |||
Case 3 | 30 | 0.228 1 | 0.057 8 |
Table 2 Boundary conditions of working conditions
工况 | 风机送风口A | 巷道入口 | 巷道内壁 | 温度/℃ | 巷道内壁氡析出率/(Bq·s-1·m-2) | 氡的扩散系数/(cm2·s-1) |
Case 1 | 为速度入口,风速为8 m·s-1,氡的组分设置为0,湍动能为3.57 %,特征长度为0.3 m | 采用自然出流出口边界条件 | 设置为壁面,且壁面无滑移,绝热 | 20 | 0.140 1 | 0.032 8 |
Case 2 | 25 | 0.184 1 | 0.045 3 | |||
Case 3 | 30 | 0.228 1 | 0.057 8 |
工况 | 风机送风口A | 风机送风口B /(m·s-1) | 巷道入口 | 巷道内壁 | 温度/℃ | 巷道内壁氡析出率/(Bq·s-1·m-2) | 氡的扩散系数/(cm2·s-1) |
Case 1~3 | 设置为速度入口,风速均为8 m·s-1,氡的组分设置为0,湍动能为3.57 %,特征长度为0.3 m | 0.1 | 采用自然出流出口边界条件 | 设置为壁面,且壁面无滑移,绝热 | 20 25 30 | 0.140 1 0.184 1 0.228 1 | 0.032 8 0.045 3 0.057 8 |
Case 4~6 | 0.3 | ||||||
Case 7~9 | 0.5 | ||||||
Case 10~12 | 1 |
Table 3 Boundary conditions of working conditions
工况 | 风机送风口A | 风机送风口B /(m·s-1) | 巷道入口 | 巷道内壁 | 温度/℃ | 巷道内壁氡析出率/(Bq·s-1·m-2) | 氡的扩散系数/(cm2·s-1) |
Case 1~3 | 设置为速度入口,风速均为8 m·s-1,氡的组分设置为0,湍动能为3.57 %,特征长度为0.3 m | 0.1 | 采用自然出流出口边界条件 | 设置为壁面,且壁面无滑移,绝热 | 20 25 30 | 0.140 1 0.184 1 0.228 1 | 0.032 8 0.045 3 0.057 8 |
Case 4~6 | 0.3 | ||||||
Case 7~9 | 0.5 | ||||||
Case 10~12 | 1 |
工况 | 风机送风口A /(m·s-1) | 风机送风口C /(m·s-1) | 风机送风口D /(m·s-1) | 其余边界条件 | 其他 |
Case 1 | 24 | 0 | 0 | 巷道入口采用自然出流出口;巷道内壁设置为壁面,且壁面无滑移,绝热 | 温度30 ℃,巷道内壁氡析出率0.228 1 Bq·s-1·m-2,氡的扩散系数0.057 8 cm2·s-1 |
Case 2 | 16 | 0 | 0 | ||
Case 3 | 8 | 0 | 0 | ||
Case 4 | 8 | 6 | 2 |
Table 4 Boundary conditions of working conditions
工况 | 风机送风口A /(m·s-1) | 风机送风口C /(m·s-1) | 风机送风口D /(m·s-1) | 其余边界条件 | 其他 |
Case 1 | 24 | 0 | 0 | 巷道入口采用自然出流出口;巷道内壁设置为壁面,且壁面无滑移,绝热 | 温度30 ℃,巷道内壁氡析出率0.228 1 Bq·s-1·m-2,氡的扩散系数0.057 8 cm2·s-1 |
Case 2 | 16 | 0 | 0 | ||
Case 3 | 8 | 0 | 0 | ||
Case 4 | 8 | 6 | 2 |
1 | 潘自强, 陈竹舟, 王志波, 等. 中国核工业三十年辐射环境质量评价[J]. 辐射防护, 1989, 9 (4): 241- 247. |
2 |
MUDD G M. Radon sources and impacts: A review of mining and non-mining issues[J]. Reviews in Environmental Science and Bio/Technology, 2008, 7 (4): 325- 353.
DOI |
3 | 李先杰, 邓文辉, 薛建新, 等. 关于我国铀矿冶个人剂量约束值的讨论[J]. 辐射防护, 2008, 28 (1): 13- 17. |
4 | NIU G Y, CHEN J J, WANG J. Mechanical analysis of radon transport in vicinity of an underground tunnel[J]. Chinese J Comput Phys, 2012, 29 (02): 239- 244. |
5 | 范洪滨. 独头巷道氡的析出特性与排氡通风[J]. 铀矿冶, 1984, 3 (3): 50- 55. |
6 |
RICHON P, PERRIER F, SABROUX J C, et al. Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel[J]. Journal of Environmental Radioactivity, 2005, 78 (2): 179- 198.
DOI |
7 |
PERRIER F, RICHON P, SABROUX J. Modelling the effect of air exchange on 222Rn and its progeny concentration in a roadway atmosphere[J]. The Science of the Total Environment, 2005, 350 (1-3): 136- 150.
DOI |
8 | EL-FAWAL M. Mathematical modelling for radon prediction and ventilation air cleaning system requirements in underground mines[J]. The Journal of American Science, 2011, 7 (2): 389- 402. |
9 | 叶勇军, 丁德馨, 王立恒, 等. 压入式通风独头巷道内氡及其子体浓度的计算模型与其分布规律[J]. 中南大学学报(自然科学版), 2015, 46 (5): 1799- 1805. |
10 | 叶勇军, 王立恒, 丁德馨, 等. 压抽混合式通风独头巷道内氡及氡子体浓度的计算模型及其分布规律研究[J]. 核科学与工程, 2014, 34 (2): 219- 227. |
11 | 张宇轩, 叶勇军, 肖德涛, 等. 抽出式通风独头巷道内氡及氡子体浓度的分布及特性分析[J]. 核技术, 2016, 39 (5): 27- 34. |
12 |
刘欣, 袁艳平, 邓志辉, 等. 压入式通风条件下巷道断面形状对独头巷道氡浓度影响研究[J]. 制冷与空调(四川), 2018, 32 (2): 119- 124.
DOI |
13 | 谢东, 王汉青, 刘泽华, 等. 铀矿通风尾气中气态放射性核素氡大气扩散数值模拟[J]. 中南大学学报(自然科学版), 2013, 44 (2): 829- 834. |
14 | 乐仁昌, 何志杰, 卢宇, 等. 氡及其子体水平扩散系数测量研究[J]. 核技术, 2010, 33 (3): 219- 222. |
15 |
张忠相, 李向阳, 邓文辉, 等. 温度对多孔射气介质氡析出影响试验研究[J]. 工业安全与环保, 2016, 42 (6): 30- 32.
DOI |
16 |
KERAMATOLLAH A, JAFAR M, MAHDI G. Influence of indoor air conditions on radon concentration in a detached house[J]. Journal of Environmental Radioactivity, 2013, 116, 166- 173.
DOI |
17 | CHEN D X, XU Z L, LIU S, et al. Least squares finite element method with high continuity NURBS basis for incompressible Navier-Stokes equations[J]. Chinese J Comput Phys, 2014, 31 (2): 204- 221. |
18 | DING J, WENG P F. Numerical study on three-dimensional turbulent separated flow in right-angled curved duct by three turbulent models[J]. Chinese J Comput Phys, 2003, 20 (5): 386- 390. |
19 |
刘培源, 姚杨, 陈鹏飞. 地下空间氡的室内气流组织模拟[J]. 建筑热能通风空调, 2009, 28 (3): 47- 50.
DOI |
20 | ZHAO F, SHENG Z Q, YUAN G W. A positivity-preserving finite volume scheme based on second-order scheme[J]. Chinese J Comput Phys, 2020, 37 (4): 379- 392. |
21 | 国防科学技术工业委员会. 铀矿井排氡及通风技术规范EJ/T 359-2006[S]. 2006. |
22 | 苏铭德. 弯曲矩形管道内充分发展流动的数值研究——第二部分: 湍流[J]. 计算物理, 1995, 12 (1): 47- 53. |
[1] | Jianwei LI, Xuan XIANG, Jingdong WANG, Shi HU, Zheng CHEN, Yuanhua HE. Propagation of Nanoscale Microcrack Under Disturbance Strain at Different Temperatures: Phase-Field-Crystal Model [J]. Chinese Journal of Computational Physics, 2022, 39(6): 717-726. |
[2] | Li LIU, Shengli NIU, Jinhui ZHU, Yinghong ZUO, Honggang XIE, Peng SHANG. Numerical Simulation of Debris Motion from a Near-space Nuclear Detonation [J]. Chinese Journal of Computational Physics, 2022, 39(5): 521-528. |
[3] | Liyuan WU, Suying ZHANG. Ground State of Bose-Einstein Condensates in a Spin-dependent Optical Lattice [J]. Chinese Journal of Computational Physics, 2022, 39(5): 617-623. |
[4] | Xu-lin DU, Lin-song CHENG, Lang-yu NIU, Yu-ming CHEN, Ren-yi CAO, Yong-hong XIE. Numerical Simulation of 3D Discrete Fracture Networks Considering Dynamic Closure of Hydraulic Fractures and Natural Fractures [J]. Chinese Journal of Computational Physics, 2022, 39(4): 453-464. |
[5] | Tengfei ZHAO, Hua ZHANG. Analysis of Deformation and Breakage During Bubble Collision [J]. Chinese Journal of Computational Physics, 2022, 39(1): 41-52. |
[6] | Hong LI, Lixin ZHANG, Yan REN, Ming GAO, Jingnan LIU. Prediction of Water Temperature of Mixed-flow Closed Cooling Tower Based on BP Neural Network and Grey Correlation Analysis [J]. Chinese Journal of Computational Physics, 2022, 39(1): 53-59. |
[7] | Furong GUAN, Chengqian LI, Minyi DENG. Spiral Wave Dynamics of Excited Medium: Effect of Relative Refractory [J]. Chinese Journal of Computational Physics, 2021, 38(6): 749-756. |
[8] | Junjie WANG, Jisheng KOU, Jianchao CAI, Yixin PAN, Zhen ZHONG. Tolman Length-based Modified Lucas-Washburn Capillary-driven Model and Numerical Simulation [J]. Chinese Journal of Computational Physics, 2021, 38(5): 521-533. |
[9] | HU Shaoliang, XU Xiaowen, ZHENG Yuteng, ZHAO Zhenguo, WANG Weijie, XU Ran, AN Hengbin, MO Zeyao. Algorithms in Linear Solver for Large-scale Time-harmonic Maxwell's Equations in SiP Applications: State-of-the-art and Challenges [J]. Chinese Journal of Computational Physics, 2021, 38(2): 131-145. |
[10] | CHEN Hao, CAI Ruming. Shape Optimization of Stratosphere Airship with Propeller [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 562-570. |
[11] | CHE Yanjin, QI Yingxia, PAN Shuai, WANG Yuhe, ZHANG Hua. Microscopic Mechanism of Nonlinear Gas Alternating Oscillation in Microchannel Pulse Tube: Molecular Dynamics Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 571-580. |
[12] | WANG Zimo, LI Ling. Lattice Boltzmann Simulation of Fast Phase Change in Ultrashort Laser Drilling [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 299-306. |
[13] | CHEN Yu, XING Yongming. Effect of Hydrostatic Pressure on Magneto-optical Properties of Al14Mn2P16: A Density Functional Theory Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 231-239. |
[14] | SU Geman, CUI Guomin, BAO Zhongkai, XIAO Yuan, CEN Zhenyu. Analysis and Treatment on Structures with Temperature Cross in Heat Exchanger Network [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 107-118. |
[15] | WANG Zhi, ZOU Gaoyu, GONG Jing, BAI Jianfeng, ZHAI Bowen. A Pressure-based Algorithm for Numerical Simulation of One-dimensional Two-phase Flow [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(4): 413-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.