Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (6): 749-756.DOI: 10.19596/j.cnki.1001-246x.8321
• Research Reports • Previous Articles
Furong GUAN(), Chengqian LI, Minyi DENG(
)
Received:
2020-12-17
Online:
2021-11-25
Published:
2022-04-27
Contact:
Minyi DENG
CLC Number:
Furong GUAN, Chengqian LI, Minyi DENG. Spiral Wave Dynamics of Excited Medium: Effect of Relative Refractory[J]. Chinese Journal of Computational Physics, 2021, 38(6): 749-756.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8321
Fig.1 Effect of relative refractory states on the period of spiral wave (a)-(c) are the spiral wave patterns at 1000, 2000, and 3000 time steps after truncating the traveling wave (Ra=12, Rr=3, Thq=30); (d) Change of period T with time(Tha=76)
Fig.3 Effect of the relative refractory state on the trajectory of the spiral wave tip (Ra=25 - Rr, Thq=30, Tha=76) (a) Rr=0; (b)Rr=4; (c)Rr=9; (d)Rr=13; (e)Rr=14; (f)Rr=16; (g)Rr=20; (h)Rr=21
Fig.4 Evolution behavior of spiral waves under different (Rr, Ra) (Thq=30, Tha=76) (□, ○, ▲, ▼, ☆, ◇ represent stable spirals, periodic meandering spirals, quasiperiodic meandering spirals, aperiodic meandering spirals, disappearance and breakup of spiral waves, respectively.)
Fig.5 Disappearance of spiral wave caused by relative refractory state (Ra=10, Rr=15, Thq=30, Tha=76) (a)-(d) are grayscale images of cell state at t=10 000, 11 909, 11 912, and 11 970. The larger the cellular state value is, the brighter the corresponding point will be; (e)Change of cellular state with time at (20, 20)
1 |
ZYKOV V S, BODENSCHATZ E. Wave propagation in inhomogeneous excitable media[J]. Annual Review of Condensed Matter Physics, 2018, 9 (1): 435- 461.
DOI |
2 |
WANG Z, ROSTAMI Z, JAFARI S, et al. Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media[J]. Chaos, Solitons and Fractals, 2019, 128, 229- 233.
DOI |
3 | 张学良, 谭惠丽, 唐国宁, 等. 基于心脏腔式结构的心电图元胞自动机建模[J]. 物理学报, 2017, 66 (20): 24- 32. |
4 |
HUANG X Y, XU W F, LIANG J M, et al. Spiral wave dynamics in neocortex[J]. Neuron, 2010, 68 (5): 978- 990.
DOI |
5 |
FENTON F H, CHERRY E M, HASTINGS H M, et al. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity[J]. Chaos, 2002, 12 (3): 852- 892.
DOI |
6 |
HE D H, HU G, ZHAN M, et al. Pattern formation of spiral waves in an inhomogeneous medium with small-world connections[J]. Physical Review E, 2002, 65 (5): 055204.
DOI |
7 | 袁国勇, 张焕, 王光瑞. 多可激性障碍下的螺旋波动力学[J]. 物理学报, 2013, 62 (16): 53- 62. |
8 | 王春妮, 马军. 分布式电流刺激抑制心肌组织中螺旋波[J]. 物理学报, 2013, 62 (8): 308- 316. |
9 |
LIU G Q, YING H P, LUO H L, et al. Suppression of spiral breakup in excitable media by local periodic forcing[J]. International Journal of Bifurcation and Chaos, 2016, 26 (14): 1650236.
DOI |
10 |
CHEN J X, ZHANG H, QIAO L Y, et al. Interaction of excitable waves emitted from two defects by pulsed electric fields[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 54, 202- 209.
DOI |
11 | MA J, WU N J, YING H P, et al. A local phase control of spiral and spatiotemporal chaos[J]. Chinese Journal of Computational Physics, 2006, 23 (2): 243- 248. |
12 | ZHONG M, TANG G N. Suppression of spiral waves and spatiotemporal chaos in cardiac tissues with controll of calcium and potassium ionic currents[J]. Chinese Journal of Computational Physics, 2011, 28 (1): 119- 124. |
13 | ZYKOV V S. Spiral wave initiation in excitable media[J]. Philosophical Transactions of the Royal Society, 2018, 376 (2135): 20170376. |
14 |
ROMERO L, TRÉNOR B, ALONSO J M, et al. The relative role of refractoriness and source-sink relationship in reentry generation during simulated acute ischemia[J]. Annals of Biomedical Engineering, 2009, 37 (8): 1560- 1571.
DOI |
15 |
MAURER K, HOPF H C, LOWITZSCH K. Hypokalemia shortens relative refractory period of peripheral sensory nerves in man[J]. Journal of Neurology, 1977, 216 (1): 67- 71.
DOI |
16 |
TACKMANN W, LEHMANN H J. Relative refractory period of median nerve sensory fibres in the carpal tunnel syndrome[J]. European Neurology, 1974, 12 (5-6): 309- 316.
DOI |
17 | ALDERSON M K, PETAJAN J H. Relative refractory period: A measure to detect early neuropathy in alcoholics[J]. Muscle & Nerve, 1987, 10 (4): 323- 328. |
18 |
MURAKAWA Y, YAMASHITA T, AJIKI K, et al. Effects of a class iii antiarrhythmic drug and biphasic shocks on the postdefibrillation refractory period of relatively refractory myocardium[J]. Journal of Cardiovascular Electrophysiology, 1996, 7 (7): 603- 611.
DOI |
19 |
WOLFRAM S. Statistical mechanics of cellular automata[J]. Reviews of Modern Physics, 1983, 55 (3): 601- 644.
DOI |
20 | CHEN X Q, DENG M Y, TANG G N, et al. Effect of conduction delay on dynamics of spiral waves[J]. Chinese Journal of Computational Physics, 2013, 30 (4): 620- 626. |
21 |
DENG M Y, CHEN X Q, TANG G N. The effect of cellular aging on the dynamics of spiral waves[J]. Chinese Physics B, 2014, 23 (12): 120503.
DOI |
22 | DENG M Y, DAI J Y, ZHANG X L. A cellular automaton model for the ventricular myocardium considering the layer structure[J]. Chinese Physics B, 2015, 24 (9): 142- 146. |
23 | ZHANG X L, TAN H L, TANG G N, et al. Mechanical deformation of myocardial tissue with cellular automaton[J]. Chinese Journal of Computational Physics, 2018, 35 (3): 294- 302. |
24 |
FAST V G, EFIMOV I R. Stability of vortex rotation in an excitable cellular medium[J]. Physica D, 1991, 49 (1-2): 75- 81.
DOI |
25 |
BIKTASHEV V N, HOLDEN A V. Deterministic Brownian motion in the hypermeander of spiral waves[J]. Physica D, 1998, 116 (3-4): 342- 354.
DOI |
26 |
CHRISTOPH J, CHEBBOK M, RICHTER C, et al. Electromechanical vortex filaments during cardiac fibrillation[J]. Nature, 2018, 555 (7698): 667- 672.
DOI |
27 |
HUANG X, TROY W C, YANG Q, et al. Spiral waves in disinhibited mammalian neocortex[J]. The Journal of Neuroscience, 2004, 24 (44): 9897- 9902.
DOI |
28 |
VIVENTI J, KIM D H, VIGELAND L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo[J]. Nature Neuroscience, 2011, 14 (12): 1599- 1605.
DOI |
29 |
VIVENTI J, KIM D H, VIGELAND L, et al. Better resolution and fewer wires discover epileptic spiral waves[J]. Epilepsy Currents, 2012, 12 (4): 147- 149.
DOI |
[1] | Li LIU, Shengli NIU, Jinhui ZHU, Yinghong ZUO, Honggang XIE, Peng SHANG. Numerical Simulation of Debris Motion from a Near-space Nuclear Detonation [J]. Chinese Journal of Computational Physics, 2022, 39(5): 521-528. |
[2] | Liyuan WU, Suying ZHANG. Ground State of Bose-Einstein Condensates in a Spin-dependent Optical Lattice [J]. Chinese Journal of Computational Physics, 2022, 39(5): 617-623. |
[3] | Xu-lin DU, Lin-song CHENG, Lang-yu NIU, Yu-ming CHEN, Ren-yi CAO, Yong-hong XIE. Numerical Simulation of 3D Discrete Fracture Networks Considering Dynamic Closure of Hydraulic Fractures and Natural Fractures [J]. Chinese Journal of Computational Physics, 2022, 39(4): 453-464. |
[4] | Tengfei ZHAO, Hua ZHANG. Analysis of Deformation and Breakage During Bubble Collision [J]. Chinese Journal of Computational Physics, 2022, 39(1): 41-52. |
[5] | Shaoying CHEN, Xueli WANG, Zhimei GAO, Guoyong YUAN. Dynamics of Spiral Waves in Complex Ginzburg-Landau Systems Subjected to Feedback Derived from an Annular Domain [J]. Chinese Journal of Computational Physics, 2022, 39(1): 118-126. |
[6] | Junjie WANG, Jisheng KOU, Jianchao CAI, Yixin PAN, Zhen ZHONG. Tolman Length-based Modified Lucas-Washburn Capillary-driven Model and Numerical Simulation [J]. Chinese Journal of Computational Physics, 2021, 38(5): 521-533. |
[7] | Zhankang YANG, Yi NIU. Influence of Temperature, Enclosure and Ventilation on Radon Concentration Distribution in a Blind Roadway [J]. Chinese Journal of Computational Physics, 2021, 38(4): 456-464. |
[8] | Jing BAI, Zhijing HUANG, Guoning TANG. Terminating Arrhythmia by Using Motion Controller [J]. Chinese Journal of Computational Physics, 2021, 38(3): 352-360. |
[9] | HU Shaoliang, XU Xiaowen, ZHENG Yuteng, ZHAO Zhenguo, WANG Weijie, XU Ran, AN Hengbin, MO Zeyao. Algorithms in Linear Solver for Large-scale Time-harmonic Maxwell's Equations in SiP Applications: State-of-the-art and Challenges [J]. Chinese Journal of Computational Physics, 2021, 38(2): 131-145. |
[10] | CHEN Hao, CAI Ruming. Shape Optimization of Stratosphere Airship with Propeller [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 562-570. |
[11] | HUANG Zhijing, BAI Jing, TANG Guoning. Mechanism of Spontaneous Formation of Spiral Wave in Neuronal Network with Unidirectional Coupling [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 612-622. |
[12] | WANG Zimo, LI Ling. Lattice Boltzmann Simulation of Fast Phase Change in Ultrashort Laser Drilling [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 299-306. |
[13] | WANG Zhi, ZOU Gaoyu, GONG Jing, BAI Jianfeng, ZHAI Bowen. A Pressure-based Algorithm for Numerical Simulation of One-dimensional Two-phase Flow [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(4): 413-420. |
[14] | ZHANG Longhui, YOU Changfu. A Fictitious Domain Method Based on Finite Volume Scheme for Particulate Flows [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 291-297. |
[15] | XU Chengjun, XU Shengli. Sufficient Conditions and Numerical Validations for Smooth Functions in Particle Approximation of SPH Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 25-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.