Chinese Journal of Computational Physics ›› 2022, Vol. 39 ›› Issue (4): 411-417.DOI: 10.19596/j.cnki.1001-246x.8459
Previous Articles Next Articles
Xiang-qun ZHANG1(), Gen-yuan DU1,*(
), Ting-ting LIU2
Received:
2021-10-08
Online:
2022-07-25
Published:
2022-11-17
Contact:
Gen-yuan DU
Xiang-qun ZHANG, Gen-yuan DU, Ting-ting LIU. Synthesizing Gas Pressure Based on Acoustic Relaxation Frequency of Sound Speed Dispersion Measured at Three-frequency Point[J]. Chinese Journal of Computational Physics, 2022, 39(4): 411-417.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8459
Fig.1 Acoustic velocity dispersion for 100%CO2 at T=304.2 K under different pressures (0.04, 0.2, 1, 5, 25 atm from left to right); "+": Experimental data from Shields[18]
c1/(m·s-1) | c2/(m·s-1) | c3/(m·s-1) | fm/Hz | 测量P/atm | 探测P/atm |
272.0 | 283.5 | 283.7 | 1 766 | 0.04 | 0.04 |
270.8 | 281.6 | 283.7 | 8 871 | 0.2 | 0.20 |
270.8 | 273.0 | 283.2 | 43.5 × 103 | 1 | 1.00 |
270.4 | 270.8 | 276.6 | 218.3 × 103 | 5 | 5.01 |
270.2 | 270.6 | 271.1 | 1.1 × 106 | 25 | 25.01 |
Table 1 Acoustic velocity of 100%CO2 at three selected frequencies (0.6, 20, 200 kHz) under different pressures (T = 304.2 K), synthesized acoustic relaxation frequencies and gas pressures
c1/(m·s-1) | c2/(m·s-1) | c3/(m·s-1) | fm/Hz | 测量P/atm | 探测P/atm |
272.0 | 283.5 | 283.7 | 1 766 | 0.04 | 0.04 |
270.8 | 281.6 | 283.7 | 8 871 | 0.2 | 0.20 |
270.8 | 273.0 | 283.2 | 43.5 × 103 | 1 | 1.00 |
270.4 | 270.8 | 276.6 | 218.3 × 103 | 5 | 5.01 |
270.2 | 270.6 | 271.1 | 1.1 × 106 | 25 | 25.01 |
Fig.2 Acoustic velocity dispersion of gas mixtures 86.9%CO2- 13.1%N2 at T = 303.15 K under different pressures (0.05, 0.25, 1, 4, 20 atm from left to right); "+": Experimental data from Zhang[19]
c1/(m·s-1) | c2/(m·s-1) | c3/(m·s-1) | fm/Hz | 测量P/atm | 探测P/atm |
279.7 | 290.1 | 290.2 | 1 836 | 0.05 | 0.05 |
278.5 | 289.5 | 290.1 | 9 350 | 0.25 | 0.26 |
278.4 | 284.7 | 289.8 | 36.5 × 103 | 1 | 1.00 |
270.4 | 279.2 | 286.0 | 147.4 × 103 | 4 | 4.04 |
270.3 | 278.5 | 279.2 | 738.5 × 103 | 20 | 20.2 |
Table 2 Acoustic velocity of gas mixtures 86.9%CO2-13.1%N2 at three selected frequencies (0.6, 40, 200 kHz) under different pressures (T = 303.15 K), synthesized acoustic relaxation frequencies and gas pressures
c1/(m·s-1) | c2/(m·s-1) | c3/(m·s-1) | fm/Hz | 测量P/atm | 探测P/atm |
279.7 | 290.1 | 290.2 | 1 836 | 0.05 | 0.05 |
278.5 | 289.5 | 290.1 | 9 350 | 0.25 | 0.26 |
278.4 | 284.7 | 289.8 | 36.5 × 103 | 1 | 1.00 |
270.4 | 279.2 | 286.0 | 147.4 × 103 | 4 | 4.04 |
270.3 | 278.5 | 279.2 | 738.5 × 103 | 20 | 20.2 |
V(f1)误差/% | V(f2)误差/% | V(f3)误差/% | 测量P/atm | 探测P/atm | 压强误差/% |
+1 | 0 | 0 | 1 | 1.001 | +0.1 |
-1 | 0 | 0 | 1 | 0.998 | -0.2 |
0 | +1 | 0 | 1 | 0.997 | -0.3 |
0 | -1 | 0 | 1 | 1.002 | +0.2 |
0 | 0 | +1 | 1 | 1.002 | +0.2 |
0 | 0 | -1 | 1 | 0.999 | -0.1 |
+1.5 | 0 | -1.5 | 2 | 2.0 | 0 |
+1.5 | 0 | +1.5 | 2 | 1.99 | +0.5 |
-1.5 | 0 | +1.5 | 2 | 2.0 | 0 |
-1.5 | 0 | -1.5 | 2 | 2.01 | -0.5 |
Table 3 Effects of acoustic velocity measurement error at three selected frequencies for gas mixtures 86.9%CO2-13.1%N2 on synthesized gas pressure
V(f1)误差/% | V(f2)误差/% | V(f3)误差/% | 测量P/atm | 探测P/atm | 压强误差/% |
+1 | 0 | 0 | 1 | 1.001 | +0.1 |
-1 | 0 | 0 | 1 | 0.998 | -0.2 |
0 | +1 | 0 | 1 | 0.997 | -0.3 |
0 | -1 | 0 | 1 | 1.002 | +0.2 |
0 | 0 | +1 | 1 | 1.002 | +0.2 |
0 | 0 | -1 | 1 | 0.999 | -0.1 |
+1.5 | 0 | -1.5 | 2 | 2.0 | 0 |
+1.5 | 0 | +1.5 | 2 | 1.99 | +0.5 |
-1.5 | 0 | +1.5 | 2 | 2.0 | 0 |
-1.5 | 0 | -1.5 | 2 | 2.01 | -0.5 |
V(f3)误差/% | fm/kHz | 探测P/atm | P误差/% |
2.5 | 226 | 1.005 | +0.5 |
-2.5 | 164 | 0.996 | -0.4 |
Table 4 Effects of acoustic velocity measurement error on detected gas pressure at f3 = 200 kHz in Fig. 1
V(f3)误差/% | fm/kHz | 探测P/atm | P误差/% |
2.5 | 226 | 1.005 | +0.5 |
-2.5 | 164 | 0.996 | -0.4 |
1 |
|
2 |
DOI |
3 |
|
4 |
ZENG F. Ultrasonic hydrogen sensing based on acoustic absorption spectrum and optical fiber laser sensor[D]. Wuhan: Wuhan University of Technology, 2020.
|
5 |
|
6 |
ZHOU W. Measurement of gas temperature and component distribution based on acoustic velocity and acoustic relaxation attenuation tomography[D]. Beijing: North China Electric Power University (Beijing), 2019.
|
7 |
DOI |
8 |
DOI |
9 |
DOI |
10 |
DOI |
11 |
DOI |
12 |
LIU T. Gas sensing method based on decomposition of acoustic relaxation information[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
13 |
DOI |
14 |
|
15 |
DOI |
16 |
DOI |
17 |
|
18 |
DOI |
19 |
|
20 |
|
[1] | ZHANG Kesheng, ZHANG Shigong, ZHANG Xiangqun, ZHOU Zhengda. An Algorithm for Synthesizing Excitable Gas Pressure Based on Sound Relaxation Frequency [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(6): 699-706. |
[2] | ZHANG Kesheng, ZHANG Xiangqun, SHAO Fang, TANG Wenyong. Analysis of Environmental Influencing on Acoustic Relaxation Frequency in Multi-component Excitable Gases [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 89-98. |
[3] | Song Wendong, Liu Zuli, Li Zaiguang. INFLUENCE OF LOW PRESSURE GLOW DISCHARGE PARAMETERS ON THE SECONDARY ELECTRON EMISSION COEFFICIENT [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 9(1): 53-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.