Chinese Journal of Computational Physics ›› 2022, Vol. 39 ›› Issue (5): 564-578.DOI: 10.19596/j.cnki.1001-246x.8473
• Research Reports • Previous Articles Next Articles
Cong XIAO1,2(), Shicheng ZHANG1,2, Xinfang MA1,2, Tong ZHOU3, Tengfei HOU4
Received:
2021-11-17
Online:
2022-09-25
Published:
2023-01-07
Cong XIAO, Shicheng ZHANG, Xinfang MA, Tong ZHOU, Tengfei HOU. Model-reduced Autoregressive Neural Network for Parameter Inversion[J]. Chinese Journal of Computational Physics, 2022, 39(5): 564-578.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8473
参数 | 取值 | 参数 | 取值 | |
网格数 | 20 × 20 | 生产时间/d | 1800 | |
水、油密度/(kg·m-3) | 1 014; 859 | 训练数据集,Ns | 400,600,800,1000 | |
水、油黏度/(mP·s) | 0.4; 2 | 测试数据集,Nt | 200 | |
地层水、油饱和度 | Sw = 0.2; So = 0.8 | 初始学习效率 | 0.001 | |
初始地层压力/MPa | 30 | 优化算子 | Adam | |
生产井压力/MPa | 25 | 每训练周期样本数 | 100 | |
注入井排量/(m3·d-1) | 150 | 训练周期数 | 500 |
Table 1 Model size, fluid properties, injection/production well settings and hyperparameters for training POD-aNN
参数 | 取值 | 参数 | 取值 | |
网格数 | 20 × 20 | 生产时间/d | 1800 | |
水、油密度/(kg·m-3) | 1 014; 859 | 训练数据集,Ns | 400,600,800,1000 | |
水、油黏度/(mP·s) | 0.4; 2 | 测试数据集,Nt | 200 | |
地层水、油饱和度 | Sw = 0.2; So = 0.8 | 初始学习效率 | 0.001 | |
初始地层压力/MPa | 30 | 优化算子 | Adam | |
生产井压力/MPa | 25 | 每训练周期样本数 | 100 | |
注入井排量/(m3·d-1) | 150 | 训练周期数 | 500 |
神经网络层 | 输入维数 | 输出维数 |
输入层 | (Nψ+ Nξ, 1) | (140, 2) |
残差块1 | (140, 2) | (140, 2) |
残差块2 | (140, 2) | (130, 2) |
残差块1 | (130, 2) | (130, 2) |
残差块2 | (130, 2) | (120, 2) |
残差块1 | (120, 2) | (120, 2) |
残差块2 | (120, 2) | (120, 1) |
全连接层 | (120, 1) | (Nξ, 1) |
Table 2 POD-aNN neural network structure setting for two-dimensional oil model
神经网络层 | 输入维数 | 输出维数 |
输入层 | (Nψ+ Nξ, 1) | (140, 2) |
残差块1 | (140, 2) | (140, 2) |
残差块2 | (140, 2) | (130, 2) |
残差块1 | (130, 2) | (130, 2) |
残差块2 | (130, 2) | (120, 2) |
残差块1 | (120, 2) | (120, 2) |
残差块2 | (120, 2) | (120, 1) |
全连接层 | (120, 1) | (Nξ, 1) |
1 |
|
2 |
DOI |
3 |
|
4 |
|
5 |
DOI |
6 |
|
7 |
|
8 |
|
9 |
DOI |
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
[1] | LIU Fuping, WANG Anhng, YANG Changchun. Numerical Inversion for Permeability Parameters of Formation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(6): 879-885. |
[2] | GAO Zhi, XIANG Hua, SHEN Yi-qing. Significance of Higher-order Accuracy Reconstruction Approximation and Perturbational Finite Volume Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 21(2): 131-136. |
[3] | Tong Binggang, Ma Huiyang, Yin Xueynan. IMPROVEMENTS OF TWO-DIMENSIONAL VORTEX METHOD [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 12(3): 369-374. |
[4] | Li Feng, Wang Yiyun. THE NUMERICAL SIMULATION FOR TURBULENT TRANSONIC FLOW OVER AIRFOILS [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 7(4): 396-402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.