Chinese Journal of Computational Physics ›› 2023, Vol. 40 ›› Issue (6): 653-665.DOI: 10.19596/j.cnki.1001-246x.8671
Previous Articles Next Articles
Qikun WAN, Yue ZHANG(), Zhaoli GUO
Received:
2022-11-25
Online:
2023-11-25
Published:
2024-01-22
Contact:
Yue ZHANG
CLC Number:
Qikun WAN, Yue ZHANG, Zhaoli GUO. Numerical Simulation of Oscillating Heat Transfer of Rarefied Binary Gas Between Two Plates[J]. Chinese Journal of Computational Physics, 2023, 40(6): 653-665.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8671
θ∈(0.1, 1) | θ∈(1, 10) | θ∈(10, ∞) | θ→∞ | |
St≫1 | (161, N96) | (161, N64) | (161, G28) | (161, G8) |
St≈O(1) | (161, N96) | (81, N48) | (81, G28) | (81, G8) |
St≪1 | (161, N64) | (81, N48) | (81, G28) | (81, G8) |
Table 1 Meshes and discrete velocity sets ((n, Nm/Gm) denotes the n grid points and m velocity points using the quadrature/Gauss-Hermite rules.)
θ∈(0.1, 1) | θ∈(1, 10) | θ∈(10, ∞) | θ→∞ | |
St≫1 | (161, N96) | (161, N64) | (161, G28) | (161, G8) |
St≈O(1) | (161, N96) | (81, N48) | (81, G28) | (81, G8) |
St≪1 | (161, N64) | (81, N48) | (81, G28) | (81, G8) |
Fig.3 Temperature amplitude distribution of the He-Xe mixtures and single gas (a) Kn=8.9, θ=10; (b) Kn=0.89, θ=10;(c) Kn=0.089, θ=10; (d) Kn=8.9, θ=1; (e) Kn=0.89, θ=1; (f) Kn=0.089, θ=1; (g) Kn=8.9, θ=0.1;(h) Kn=0.89, θ=0.1; (i) Kn=0.089, θ=0.1
1 |
SPOOR P S , SWIFT G W . Thermoacoustic separation of a He-Ar mixture[J]. Physical Review Letters, 2000, 85 (8): 1646- 1649.
DOI |
2 |
KALEMPA D , SHARIPOV F , SILVA J C . Sound waves in gaseous mixtures induced by vibro-thermal excitation at arbitrary rarefaction and sound frequency[J]. Vacuum, 2019, 159, 82- 98.
DOI |
3 | 张月. 两组分气体多尺度流动的离散统一动理学方法研究[D]. 武汉: 华中科技大学, 2020. |
4 | 周远, 罗二仓. 热声热机技术的研究进展[J]. 机械工程学报, 2009, 45 (3): 14- 26. |
5 | QIN F , SUN D , YIN X . DSMC for gas flows in a microchannel[J]. Chinese Journal of Computational Physics, 2001, 18 (6): 507- 510. |
6 | MU Z , LIU Z , WU H . Lattice Boltzmann simulation of particle sedimentation considering micro-scale gas rarefaction effect[J]. Chinese Journal of Computational Physics, 2019, 36 (4): 395- 402. |
7 | PARK J H , BAHUKUDUMBI P , BESKOK A . Rarefaction effects on shear driven oscillatory gas flows: A direct simulation Monte Carlo study in the entire Knudsen regime[J]. Physics of Fluids, 2003, 16 (2): 317- 330. |
8 |
XIE C , FAN J , SHEN Q . Rarefied gas flows in micro-channels[J]. Chinese Journal of Computational Physics, 2002, 19 (5): 377- 382.
DOI |
9 | SHARIPOV F . Rarefied gas dynamics: Fundamentals for research and practice[M]. Weinheim: John Wiley & Sons, 2016. |
10 | SHARIPOV F . Gaseous mixtures in vacuum systems and microfluidics[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31 (5): 050806. |
11 |
YARIV E , BRENNER H . Flow animation by unsteady temperature fields[J]. Physics of Fluids, 2004, 16 (11): L95- L98.
DOI |
12 |
DOI T . Numerical analysis of the time-dependent energy and momentum transfers in a rarefied gas between two parallel planes based on the linearized Boltzmann equation[J]. Journal of Heat Transfer-Transactions of the Asme, 2011, 133 (2): 022404.
DOI |
13 |
MANELA A , HADJICONSTANTINOU N G . Gas-flow animation by unsteady heating in a microchannel[J]. Physics of Fluids, 2010, 22 (6): 062001.
DOI |
14 |
MANELA A , HADJICONSTANTINOU N G . Gas motion induced by unsteady boundary heating in a small-scale slab[J]. Physics of Fluids, 2008, 20 (11): 117104.
DOI |
15 |
TSIMPOUKIS A , VALOUGEORGIS D . Pulsatile pressure driven rarefied gas flow in long rectangular ducts[J]. Physics of Fluids, 2018, 30 (4): 047104.
DOI |
16 |
TSIMPOUKIS A , VALOUGEORGIS D . Rarefied isothermal gas flow in a long circular tube due to oscillating pressure gradient[J]. Microfluidics and Nanofluidics, 2018, 22 (1): 1- 13.
DOI |
17 |
WU L , REESE J M , ZHANG Y H . Oscillatory rarefied gas flow inside rectangular cavities[J]. Journal of Fluid Mechanics, 2014, 748, 350- 367.
DOI |
18 |
WANG P , ZHU L , SU W , et al. Nonlinear oscillatory rarefied gas flow inside a rectangular cavity[J]. Physical Review E, 2018, 97 (4): 043103.
DOI |
19 |
WANG P , SU W , ZHANG Y . Oscillatory rarefied gas flow inside a three dimensional rectangular cavity[J]. Physics of Fluids, 2018, 30 (10): 102002.
DOI |
20 |
HO M T , WU L , GRAUR I , et al. Comparative study of the Boltzmann and McCormack equations for couette and fourier flows of binary gaseous mixtures[J]. International Journal of Heat and Mass Transfer, 2016, 96, 29- 41.
DOI |
21 |
ZHANG Y , WANG P , GUO Z . Oscillatory couette flow of rarefied binary gas mixtures[J]. Physics of Fluids, 2021, 33 (2): 027102.
DOI |
22 | ZHANG Y, WANG P, GUO Z L. Oscillatory Square cavity flows of binary gas mixtures[J]. Physics of Fluids, 2021, 33(6): 067121. [LinkOut]. |
23 |
NARIS S , VALOUGEORGIS D , KALEMPA D , et al. Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients[J]. Physics of fluids, 2005, 17 (10): 100607.
DOI |
24 |
MCCORMACK F J . Construction of linearized kinetic models for gaseous mixtures and molecular gases[J]. Physics of Fluids, 1973, 16 (12): 2095- 2105.
DOI |
25 |
GARCIA R D M , SIEWERT C E . The McCormack model for gas mixtures: Heat transfer in a plane channel[J]. Physics of Fluids, 2004, 16 (9): 3393- 3402.
DOI |
26 |
SZALMAS L , PITAKARNNOP J , GEOFFROY S , et al. Comparative study between computational and experimental results for binary rarefied gas flows through long microchannels[J]. Microfluidics and Nanofluidics, 2010, 9 (6): 1103- 1114.
DOI |
27 |
TSIMPOUKIS A , NARIS S , VALOUGEORGIS D . Oscillatory pressure-driven rarefied binary gas mixture flow between parallel plates[J]. Physical Review E, 2021, 103 (3): 033103.
DOI |
28 |
SHARIPOV F , CUMIN L M G , KALEMPA D . Plane Couette flow of binary gaseous mixture in the whole range of the Knudsen number[J]. European Journal of Mechanics B/Fluids, 2004, 23 (6): 899- 906.
DOI |
29 |
SHARIPOV F , CUMIN L M G , KALEMPA D . Heat flux between parallel plates through a binary gaseous mixture over the whole range of the Knudsen number[J]. Physica A-Statistical Mechanics and Its Applications, 2007, 378 (2): 183- 193.
DOI |
30 |
SHARIPOV F , KALEMPA D . Velocity slip and temperature jump coefficients for gaseous mixtures Ⅰ: Viscous slip coefficient[J]. Physics of Fluids, 2003, 15 (6): 1800- 1806.
DOI |
31 |
SHARIPOV F , KALEMPA D . Velocity slip and temperature jump coefficients for gaseous mixtures Ⅱ: Thermal slip coefficient[J]. Physics of Fluids, 2004, 16 (3): 759- 764.
DOI |
32 |
SHARIPOV F , KALEMPA D . Velocity slip and temperature jump coefficients for gaseous mixtures Ⅲ: Diffusion slip coefficient[J]. Physics of Fluids, 2004, 16 (10): 3779- 3785.
DOI |
33 |
GUO Z , XU K , WANG R . Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case[J]. Physical Review E, 2013, 88 (3): 033305.
DOI |
34 |
GUO Z , WANG R , XU K . Discrete unified gas kinetic scheme for all Knudsen number flows Ⅱ: Thermal compressible case[J]. Physical Review E, 2015, 91 (3): 033313.
DOI |
35 |
YANG J , HUANG J . Rarefied flow computations using nonlinear model Boltzmann equations[J]. Journal of Computational Physics, 1995, 120 (2): 323- 339.
DOI |
36 |
CHU C . Kinetic-theoretic description of the formation of a shock wave[J]. The Physics of Fluids, 1965, 8 (1): 12- 22.
DOI |
37 |
XU K , LIU C . A paradigm for modeling and computation of gas dynamics[J]. Physics of Fluids, 2017, 29 (2): 026101.
DOI |
38 | WANG P , HO M T , WU L , et al. A comparative study of discrete velocity methods for low-speed rarefied gas flows[J]. Computers & Fluids, 2018, 161, 33- 46. |
39 |
YANG L M , SHU C , YANG W M , et al. An improved discrete velocity method (DVM) for efficient simulation of flows in all flow regimes[J]. Physics of Fluids, 2018, 30 (6): 062005.
DOI |
40 |
SHARIPOV F , KALEMPA D . Oscillatory couette flow at arbitrary oscillation frequency over the whole range of the Knudsen number[J]. Microfluidics and Nanofluidics, 2008, 4 (5): 363- 374.
DOI |
41 |
ZHANG Y , ZHU L , WANG P , et al. Discrete unified gas kinetic scheme for flows of binary gas mixture based on the McCormack model[J]. Physics of Fluids, 2019, 31 (1): 017101.
DOI |
42 | ZHU L , GUO Z , XU K . Discrete unified gas kinetic scheme on unstructured meshes[J]. Computers & Fluids, 2016, 127, 211- 225. |
43 |
WU L , REESE J M , ZHANG Y . Solving the Boltzmann equation deterministically by the fast spectral method: Application to gas microflows[J]. Journal of Fluid Mechanics, 2014, 746, 53- 84.
DOI |
44 |
WANG P , SU W , ZHU L , et al. Heat and mass transfer of oscillatory lid-driven cavity flow in the continuum, transition and free molecular flow regimes[J]. International Journal of Heat and Mass Transfer, 2019, 131, 291- 300.
DOI |
[1] | GAO Hui, GAO Ruifeng, YAO Mengjun, ZHANG Daoxu, PENG Chengyu, ZHANG Ying. Numerical Simulation of Fluid-Thermal Coupled in Droplet Impact onto Liquid Film: Front Tracking Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 422-430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.