Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (2): 182-192.DOI: 10.19596/j.cnki.1001-246x.8704
Previous Articles Next Articles
Chong LI(), Meijiao WANG, Lin GE, Lianzhen CAO(
)
Received:
2023-02-13
Online:
2024-03-25
Published:
2024-04-03
Contact:
Lianzhen CAO
CLC Number:
Chong LI, Meijiao WANG, Lin GE, Lianzhen CAO. Study on the Intermolecular Carrier Recombination Dynamics in Organic Solar Cells[J]. Chinese Journal of Computational Physics, 2024, 41(2): 182-192.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8704
Fig.3 Charge carrier recombination dynamics in the D/A system with ΔE = 0.35 eV (a) net charge density distribution in the initial state; (b) evolution of net charge density distribution with time; (c) evolution of total charges on separated chain with time; (d) evolution of total energy with time
Fig.4 Effect of the on-site energy difference ΔE on intermolecular carrier recombination (a) relationship between charge-recombination quantities and the on-site energy differences ΔE; (b) relationship between the energy loss Eloss and the on-site energy differences ΔE
Fig.5 Dynamical evolution of D/A system with critical electric field E=2.0 × 10-3 V·nm-1 and ΔE= 0.35 eV (a) evolution of net charge density distribution with time; (b) evolution of total charges on separated chains with time
Fig.6 Effect of thermal effect on intermolecular carrier recombination (a) evolution of net charge density distribution of D/A system with time for ΔE = 0.35 eV and T = 50 K; (b) evolution of the total charges on separated chains with time; (c) relationship between charge-recombination quantities and the temperature T as ΔE=0.35 eV
Fig.8 Charge carrier recombination dynamics in D/A1/A2 system for ΔE = 0.35 eV (a) net charge density distribution in the initial state; (b) evolution of net charge density distribution with time; (c) evolution of total charges on separated chain with time; (d) evolution of total energy with time
1 | SPANGGAARD H , KREBS F C . A brief history of the development of organic and polymeric photovoltaics[J]. Solar Energy Materials and Solar Cells, 2004, 83 (2/3): 125- 146. |
2 |
LI Gang , ZHU Rui , YANG Yang . Polymer solar cells[J]. Nature Photonics, 2012, 6 (3): 153- 161.
DOI |
3 |
YAO Huifeng , QIAN Deping , ZHANG Hao , et al. Critical role of molecular electrostatic potential on charge generation in organic solar cells[J]. Chinese Journal of Chemistry, 2018, 36 (6): 491- 494.
DOI |
4 |
KEARNS D , CALVIN M . Photovoltaic effect and photoconductivity in laminated organic systems[J]. The Journal of Chemical Physics, 1958, 29 (4): 950- 951.
DOI |
5 |
TANG C W . Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48 (2): 183- 185.
DOI |
6 |
SARICIFTCI N S , BRAUN D , ZHANG C , et al. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells[J]. Applied Physics Letters, 1993, 62 (6): 585- 587.
DOI |
7 |
YU G , GAO J , HUMMELEN J C , et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270 (5243): 1789- 1791.
DOI |
8 |
LIN Yuze , WANG Jiayu , ZHANG Zhiguo , et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27 (7): 1170- 1174.
DOI |
9 |
YUAN Jun , ZHANG Yunqiang , ZHOU Liuyang , et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3 (4): 1140- 1151.
DOI |
10 |
JIANG Kui , WEI Qingya , LAI J Y L , et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells[J]. Joule, 2019, 3 (12): 3020- 3033.
DOI |
11 |
LEE H , PARK C , SIN D H , et al. Recent advances in morphology optimization for organic photovoltaics[J]. Advanced Materials, 2018, 30 (34): 1800453.
DOI |
12 |
ZHENG Zhong , WANG Jianqiu , BI Pengqing , et al. Tandem organic solar cell with 20.2% efficiency[J]. Joule, 2022, 6 (1): 171- 184.
DOI |
13 |
MENKE S M , RAN N A , BAZAN G C , et al. Understanding energy loss in organic solar cells: Toward a new efficiency regime[J]. Joule, 2018, 2 (1): 25- 35.
DOI |
14 |
HAN Guangchao , YI Yuanping . Origin of photocurrent and voltage losses in organic solar cells[J]. Advanced Theory and Simulations, 2019, 2 (8): 1900067.
DOI |
15 |
CLARKE T M , DURRANT J R . Charge photogeneration in organic solar cells[J]. Chemical Reviews, 2010, 110 (11): 6736- 6767.
DOI |
16 |
BRÉDAS J L , NORTON J E , CORNIL J , et al. Molecular understanding of organic solar cells: The challenges[J]. Accounts of Chemical Research, 2009, 42 (11): 1691- 1699.
DOI |
17 |
PROCTOR C M , KUIK M , NGUYEN T Q . Charge carrier recombination in organic solar cells[J]. Progress in Polymer Science, 2013, 38 (12): 1941- 1960.
DOI |
18 |
ZHANG Jianqi , ZHU Lingyun , WEI Zhixiang . Toward over 15% power conversion efficiency for organic solar cells: Current status and perspectives[J]. Small Methods, 2017, 1 (12): 1700258.
DOI |
19 |
LOMBARDO C , DODABALAPUR A . Nongeminate carrier recombination rates in organic solar cells[J]. Applied Physics Letters, 2010, 97 (23): 233302.
DOI |
20 |
GÖHLER C , WAGENPFAHL A , DEIBEL C . Nongeminate recombination in organic solar cells[J]. Advanced Electronic Materials, 2018, 4 (10): 1700505.
DOI |
21 |
KAWASHIMA K , TAMAI Y , OHKITA H , et al. High-efficiency polymer solar cells with small photon energy loss[J]. Nature Communications, 2015, 6, 10085.
DOI |
22 |
YANG Wenchao , YAO Yao , GUO Pengfei , et al. Optimum driving energy for achieving balanced open-circuit voltage and short-circuit current density in organic bulk heterojunction solar cells[J]. Physical Chemistry Chemical Physics, 2018, 20 (47): 29866- 29875.
DOI |
23 |
NENASHEV A V , WIEMER M , DVURECHENSKⅡ A V , et al. Analytical theory for charge carrier recombination in blend organic solar cells[J]. Physical Review B, 2017, 95 (10): 104207.
DOI |
24 |
VANDEWAL K , ALBRECHT S , HOKE E T , et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces[J]. Nature Materials, 2014, 13 (1): 63- 68.
DOI |
25 |
LIU Jing , CHEN Shangshang , QIAN Deping , et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force[J]. Nature Energy, 2016, 1, 16089.
DOI |
26 |
GÖHLER C , WAGENPFAHL A , DEIBEL C . Nongeminate recombination in organic solar cells[J]. Advanced Electronic Materials, 2018, 4 (10): 1700505.
DOI |
27 |
BARAN D , GASPARINI N , WADSWORTH A , et al. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination[J]. Nature Communications, 2018, 9 (1): 2059.
DOI |
28 |
TAN C H , GORMAN J , WADSWORTH A , et al. Barbiturate end-capped non-fullerene acceptors for organic solar cells: Tuning acceptor energetics to suppress geminate recombination losses[J]. Chemical Communications, 2018, 54 (24): 2966- 2969.
DOI |
29 |
PERDIGÓN-TORO L , ZHANG Huotian , MARKINA A , et al. Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell[J]. Advanced Materials, 2020, 32 (9): e1906763.
DOI |
30 | 周庆中, 郭丰, 张明睿, 等. 载流子复合及能量无序对聚合物太阳电池开路电压的影响[J]. 物理学报, 2020, 69 (4): 046101. |
31 |
ZARRABI N , SANDBERG O J , KAISER C , et al. Experimental evidence relating charge-transfer-state kinetics and strongly reduced bimolecular recombination in organic solar cells[J]. Journal of Physical Chemistry Letters, 2020, 11 (24): 10519- 10525.
DOI |
32 |
CHA H , FISH G , LUKE J , et al. Suppression of recombination losses in polymer: Nonfullerene acceptor organic solar cells due to aggregation dependence of acceptor electron affinity[J]. Advanced Energy Materials, 2019, 9 (27): 1901254.
DOI |
33 |
COROPCEANU V , BRÉDAS J L , MEHRAEEN S . Impact of active layer morphology on bimolecular recombination dynamics in organic solar cells[J]. The Journal of Physical Chemistry C, 2017, 121 (45): 24954- 24961.
DOI |
34 | KARKI A , VOLLBRECHT J , GILLETT A J , et al. The role of bulk and interfacial morphology in charge generation, recombination, and extraction in non-fullerene acceptor organic solar cells[J]. Energy & Environmental Science, 2020, 13 (10): 3679- 3692. |
35 |
PHILIPPA B , STOLTERFOHT M , WHITE R D , et al. Molecular weight dependent bimolecular recombination in organic solar cells[J]. The Journal of Chemical Physics, 2014, 141 (5): 054903.
DOI |
36 |
RAUH D , DEIBEL C , DYAKONOV V . Charge density dependent nongeminate recombination in organic bulk heterojunction solar cells[J]. Advanced Functional Materials, 2012, 22 (16): 3371- 3377.
DOI |
37 |
SU W P , SCHRIEFFER J R , HEEGER A J . Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42 (25): 1698- 1701.
DOI |
38 |
SU W P , SCHRIEFFER J R , HEEGER A J . Soliton excitations in polyacetylene[J]. Physical Review B, 1980, 22 (4): 2099- 2111.
DOI |
39 | 赵俊卿, 贾振锋, 张天佑, 等. PPV中极化子动力学方程的龙格-库塔求解[J]. 计算物理, 2011, 28 (5): 743- 748. |
40 |
JOHANSSON A A , STAFSTRO¨M S . Nonadiabatic simulations of polaron dynamics[J]. Physical Review B, 2004, 69 (23): 235205.
DOI |
41 | 吉航, 孙仲谋, 周卓彦, 等. 外电场对CO分子及离子性质的调制和降解[J]. 计算物理, 2022, 39 (3): 327- 334. |
42 | 乃皮赛·吾买尔江, 闫好奎, 布玛丽亚·阿布力米提, 等. 外电场下CHBr3分子的光谱和解离特性[J]. 计算物理, 2022, 39 (5): 624- 630. |
43 | 李建伟, 项璇, 王景栋, 等. 不同温度和扰动应变作用下纳米微裂纹的晶体相场研究[J]. 计算物理, 2022, 39 (6): 717- 726. |
[1] | LIU Wenjing, ZHU Linfan, GE Min, XU Kezun. Deconvolution of Electron Energy Loss Spectrum of Diatomic Molecules [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(2): 261-266. |
[2] | Zhang Ziping, Cheng Jinrong. MASS RECONSTRUCTION OF H→ZZ (WW)→llvv BY NEURAL NETWORK [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 12(4): 511-514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.