1 |
任玉新, 陈海昕. 计算流体力学基础[M]. 北京: 清华大学出版社, 2006.
|
2 |
水鸿寿. 一维流体力学差分方法[M]. 北京: 国防工业出版社, 1998.
|
3 |
SHYUE K M . A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions[J]. Journal of Computational Physics, 2006, 215 (1): 219- 244.
DOI
|
4 |
SHYUE K M . A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state[J]. Journal of Computational Physics, 2001, 171 (2): 678- 707.
DOI
|
5 |
吴宗铎, 严谨, 宗智, 等. 扩散界面形式下一种节约时间步的质量分数混合模型[J]. 计算物理, 2022, 39 (5): 510- 520.
DOI
|
6 |
吴宗铎, 宗智. Mie-Grüneisen状态方程下多介质守恒型欧拉方程组的数值计算[J]. 计算物理, 2011, 28 (6): 803- 809.
DOI
|
7 |
吴宗铎, 严谨, 宗智, 等. 一种基于HLLC算法的Mie-Grüneisen多介质混合模型[J]. 计算物理, 2020, 37 (1): 55- 62.
DOI
|
8 |
WARD G M , PULLIN D I . A hybrid, center-difference, limiter method for simulations of compressible multicomponent flows with Mie-Grüneisen equation of state[J]. Journal of Computational Physics, 2010, 229 (8): 2999- 3018.
DOI
|
9 |
HARTEN A . High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49 (3): 357- 393.
DOI
|
10 |
WU Zongduo , SUN Lei , ZONG Zhi . A mass-fraction-based interface-capturing method for multi-component flow[J]. International Journal for Numerical Methods in Fluids, 2013, 73 (1): 74- 102.
DOI
|
11 |
SUN Ziyao , INABA S , XIAO Feng . Boundary variation diminishing (BVD) reconstruction: A new approach to improve godunov schemes[J]. Journal of Computational Physics, 2016, 322, 309- 325.
DOI
|
12 |
肖锋. 基于BVD原理的高保真空间重构方法[J]. 空气动力学学报, 2021, 39 (1): 125- 137.
|
13 |
DENG Xi , INABA S , XIE Bin , et al. High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces[J]. Journal of Computational Physics, 2018, 371, 945- 966.
DOI
|
14 |
DENG Xi , SHIMIZU Yuya , XIAO Feng . A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm[J]. Journal of Computational Physics, 2019, 386, 323- 349.
DOI
|
15 |
DENG Xi , SHIMIZU Yuya , XIE Bin , et al. Constructing higher order discontinuity-capturing schemes with upwind-biased interpolations and boundary variation diminishing algorithm[J]. Computers & Fluids, 2020, 200, 104433.
|
16 |
RUAN Yucang , ZHANG Xinting , TIAN Baolin , et al. A flux split based finite-difference two-stage boundary variation diminishing scheme with application to the Euler equations[J]. Computers & Fluids, 2020, 213, 104725.
|
17 |
WAKIMURA H , TAKAGI S , XIAO Feng . Symmetry-preserving enforcement of low-dissipation method based on boundary variation diminishing principle[J]. Computers & Fluids, 2022, 233, 105227.
|
18 |
张昊, 谢春晖, 董义道, 等. 基于边界变差最小的高精度有限差分格式构造[J]. 航空学报, 2021, 42 (z1): 726397.
|
19 |
丁建中. MUSCL格式TV性质的非线性分析[J]. 计算物理, 1997, 14 (6): 782- 786.
|
20 |
BIDADI S , RANI S L . Investigation of numerical viscosities and dissipation rates of second-order TVD-MUSCL schemes for implicit large-eddy simulation[J]. Journal of Computational Physics, 2015, 281, 1003- 1031.
|
21 |
吴宗铎, 赵勇, 严谨, 等. 球坐标系下多介质混合物模型的数值模拟[J]. 爆炸与冲击, 2019, 39 (5): 054204.
|
22 |
BARTON P T . An interface-capturing Godunov method for the simulation of compressible solid-fluid problems[J]. Journal of Computational Physics, 2019, 390, 25- 50.
|
23 |
LIU Tiegang , KHOO B C , YEO K S . The simulation of compressible multi-medium flow. I. A new methodology with test applications to 1D gas-gas and gas-water cases[J]. Computers & Fluids, 2001, 30 (3): 291- 314.
|
24 |
SAUREL R , ABGRALL R . A multiphase Godunov method for compressible multifluid and multiphase flows[J]. Journal of Computational Physics, 1999, 150 (2): 425- 467.
|