Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (4): 426-439.DOI: 10.19596/j.cnki.1001-246x.8732
Previous Articles Next Articles
Hongwang YUAN1(), Xiyin WANG2,*(
), Jin LI2,*(
)
Received:
2023-03-20
Online:
2024-07-25
Published:
2024-08-24
Contact:
Xiyin WANG, Jin LI
CLC Number:
Hongwang YUAN, Xiyin WANG, Jin LI. High Accuracy Numerical Solution of Wave Equation[J]. Chinese Journal of Computational Physics, 2024, 41(4): 426-439.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8732
节点数m=n=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
9 | 9.704 1×10-3 | 1.450 6×10-3 | 9.801 2×10-3 | 1.465 1×10-3 | |||
11 | 1.021 9×10-4 | 6.56 | 1.141 1×10-5 | 2.373 0×10-4 | 5.37 | 2.649 9×10-5 | |
13 | 9.277 3×10-7 | 6.78 | 8.116 6×10-8 | 3.526 0×10-6 | 6.07 | 3.084 9×10-7 | |
15 | 8.489 6×10-9 | 6.77 | 6.021 9×10-10 | 3.623 9×10-8 | 6.60 | 2.570 5×10-9 | |
17 | 5.010 3×10-11 | 7.40 | 2.956 7×10-12 | 1.781 3×10-8 | 1.02 | 1.051 2×10-9 | |
19 | 3.873 4×10-11 | 0.37 | 1.940 3×10-12 | 2.787 4×10-8 | -0.6 | 1.396 3×10-9 |
Table 1 Absolute error, relative error and the order of convergence of additional method and displacement method
节点数m=n=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
9 | 9.704 1×10-3 | 1.450 6×10-3 | 9.801 2×10-3 | 1.465 1×10-3 | |||
11 | 1.021 9×10-4 | 6.56 | 1.141 1×10-5 | 2.373 0×10-4 | 5.37 | 2.649 9×10-5 | |
13 | 9.277 3×10-7 | 6.78 | 8.116 6×10-8 | 3.526 0×10-6 | 6.07 | 3.084 9×10-7 | |
15 | 8.489 6×10-9 | 6.77 | 6.021 9×10-10 | 3.623 9×10-8 | 6.60 | 2.570 5×10-9 | |
17 | 5.010 3×10-11 | 7.40 | 2.956 7×10-12 | 1.781 3×10-8 | 1.02 | 1.051 2×10-9 | |
19 | 3.873 4×10-11 | 0.37 | 1.940 3×10-12 | 2.787 4×10-8 | -0.6 | 1.396 3×10-9 |
节点数m=n= | 三点中心差分法 | ||
Ea | rate | Er | |
4 | 2.087 7×10-2 | 1.443 9×10-2 | |
9 | 5.098 7×10-3 | 2.03 | 1.322 4×10-3 |
18 | 2.541 7×10-3 | 1.00 | 3.102 2×10-4 |
36 | 1.270 9×10-3 | 1.00 | 7.534 0×10-5 |
64 | 7.118 6×10-4 | 0.84 | 2.344 5×10-5 |
Table 2 Absolute error, relative error and the order of convergence of three center difference method at t=1
节点数m=n= | 三点中心差分法 | ||
Ea | rate | Er | |
4 | 2.087 7×10-2 | 1.443 9×10-2 | |
9 | 5.098 7×10-3 | 2.03 | 1.322 4×10-3 |
18 | 2.541 7×10-3 | 1.00 | 3.102 2×10-4 |
36 | 1.270 9×10-3 | 1.00 | 7.534 0×10-5 |
64 | 7.118 6×10-4 | 0.84 | 2.344 5×10-5 |
节点数m=n=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
9 | 6.718 7×10-4 | 2.157 3×10-5 | 7.267 6×10-4 | 2.333 6×10-5 | |||
11 | 3.321 9×10-6 | 7.66 | 8.174 0×10-8 | 8.275 7×10-6 | 6.46 | 2.036 4×10-7 | |
13 | 1.856 5×10-8 | 7.48 | 3.644 2×10-10 | 6.241 0×10-8 | 7.05 | 1.225 1×10-9 | |
15 | 1.077 7×10-10 | 7.43 | 1.738 3×10-12 | 4.258 6×10-8 | 0.55 | 6.868 9×10-10 | |
17 | 1.227 3×10-10 | -0.2 | 1.664 1×10-12 | 1.977 4×10-7 | -2.2 | 2.681 2×10-9 | |
19 | 3.116 7×10-10 | -1.3 | 3.616 9×10-12 | 1.413 5×10-7 | 0.50 | 1.640 4×10-9 |
Table 3 Absolute error, relative error and the order of convergence of additional method and displacement method
节点数m=n=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
9 | 6.718 7×10-4 | 2.157 3×10-5 | 7.267 6×10-4 | 2.333 6×10-5 | |||
11 | 3.321 9×10-6 | 7.66 | 8.174 0×10-8 | 8.275 7×10-6 | 6.46 | 2.036 4×10-7 | |
13 | 1.856 5×10-8 | 7.48 | 3.644 2×10-10 | 6.241 0×10-8 | 7.05 | 1.225 1×10-9 | |
15 | 1.077 7×10-10 | 7.43 | 1.738 3×10-12 | 4.258 6×10-8 | 0.55 | 6.868 9×10-10 | |
17 | 1.227 3×10-10 | -0.2 | 1.664 1×10-12 | 1.977 4×10-7 | -2.2 | 2.681 2×10-9 | |
19 | 3.116 7×10-10 | -1.3 | 3.616 9×10-12 | 1.413 5×10-7 | 0.50 | 1.640 4×10-9 |
节点数m=n=s=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
7 | 5.578 9×10-1 | 7.490 9×10-2 | 5.069 6×10-2 | 6.807 1×10-3 | |||
9 | 5.774 6×10-2 | 3.27 | 4.728 8×10-3 | 2.031 4×10-2 | 1.32 | 1.663 5×10-3 | |
11 | 1.259 3×10-3 | 5.52 | 6.939 6×10-5 | 1.143 6×10-3 | 4.15 | 6.302 0×10-5 | |
13 | 2.137 9×10-5 | 5.88 | 8.465 9×10-7 | 3.270 5×10-5 | 5.13 | 1.295 1×10-6 | |
15 | 2.961 0×10-7 | 6.17 | 8.830 6×10-9 | 5.837 7×10-7 | 5.81 | 1.741 0×10-8 | |
17 | 2.488 4×10-9 | 6.89 | 5.789 9×10-11 | 7.225 8×10-9 | 6.34 | 1.681 2×10-10 |
Table 4 Absolute error, relative error and the order of convergence with additional method and displacement method
节点数m=n=s=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
7 | 5.578 9×10-1 | 7.490 9×10-2 | 5.069 6×10-2 | 6.807 1×10-3 | |||
9 | 5.774 6×10-2 | 3.27 | 4.728 8×10-3 | 2.031 4×10-2 | 1.32 | 1.663 5×10-3 | |
11 | 1.259 3×10-3 | 5.52 | 6.939 6×10-5 | 1.143 6×10-3 | 4.15 | 6.302 0×10-5 | |
13 | 2.137 9×10-5 | 5.88 | 8.465 9×10-7 | 3.270 5×10-5 | 5.13 | 1.295 1×10-6 | |
15 | 2.961 0×10-7 | 6.17 | 8.830 6×10-9 | 5.837 7×10-7 | 5.81 | 1.741 0×10-8 | |
17 | 2.488 4×10-9 | 6.89 | 5.789 9×10-11 | 7.225 8×10-9 | 6.34 | 1.681 2×10-10 |
节点数m=n=s= | 三点中心差分法 | ||
Ea | rate | Er | |
4 | 3.349 9×10-1 | 2.441 2×10-1 | |
9 | 2.202 1×10-1 | 0.61 | 3.690 7×10-2 |
17 | 1.579 5×10-1 | 0.48 | 9.359 0×10-3 |
31 | 1.158 1×10-1 | 0.45 | 2.672 8×10-3 |
62 | 8.132 4×10-2 | 0.51 | 6.473 3×10-4 |
Table 5 Time absolute error, relative error and the order of convergence with three center difference method at t=1
节点数m=n=s= | 三点中心差分法 | ||
Ea | rate | Er | |
4 | 3.349 9×10-1 | 2.441 2×10-1 | |
9 | 2.202 1×10-1 | 0.61 | 3.690 7×10-2 |
17 | 1.579 5×10-1 | 0.48 | 9.359 0×10-3 |
31 | 1.158 1×10-1 | 0.45 | 2.672 8×10-3 |
62 | 8.132 4×10-2 | 0.51 | 6.473 3×10-4 |
1 |
汪勇, 穆鹏飞, 蔡文杰, 等. 五对角紧致差分格式优化及二维声波传播波动方程数值模拟[J]. 石油物探, 2019, 58 (4): 486- 498.
DOI |
2 | BIAZAR J , ESLAMI M . A new technique for non-linear two-dimensional wave equations[J]. Scientia Iranica, 2013, 20 (2): 359- 363. |
3 | FU Zuntao , LIU Shikuo , LIU Shida , et al. New jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations[J]. Physics Letters A, 2001, 290 (1/2): 72- 76. |
4 | 马友能, 余锦华, 汪源源. 二阶声场波动方程的非分裂完全匹配层算法[J]. 声学学报, 2013, 38 (6): 681- 686. |
5 | 王兆清, 徐子康. 基于平面问题的位移压力混合配点法[J]. 计算物理, 2018, 35 (1): 77- 86. |
6 | HAMILTON B , BILBAO S . Optimised 25-point finite difference schemes for the three-dimensional wave equation[J]. Proceedings of Meetings on Acoustics, 2017, 28 (1): 015022. |
7 | 马德堂, 朱光明. 有限元法与伪谱法混合求解弹性波动方程[J]. 地球科学与环境学报, 2004, (1): 61- 64. |
8 | 张荣培, 王迪, 蔚喜军, 等. 基于广义交替数值通量的局部间断Galerkin方法求解二维波动方程[J]. 物理学报, 2020, 69 (2): 60- 66. |
9 |
ZHANG Zan , LI Dongming , CHENG Yumin , et al. The improved element-free Galerkin method for three-dimensional wave equation[J]. Acta Mechanica Sinica, 2012, 28 (3): 808- 818.
DOI |
10 | 李坤, 黄其柏, 林立广. 二阶时域波动方程的无网格方法求解[J]. 华中科技大学学报(自然科学版), 2011, 39 (3): 26- 29. |
11 | CASULLI V . Semi-implicit finite difference methods for the two-dimensional shallow water equations[J]. Journal of Computational Physics, 1990, 86 (1): 56- 74. |
12 | CASULLI V , CHENG R T . Semi-implicit finite difference methods for three-dimensional shallow water flow[J]. International Journal for Numerical Methods in Fluids, 1992, 15 (6): 629- 648. |
13 | DEHGHAN M , MOHEBBI A . The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation[J]. Numerical Methods for Partial Differential Equations, 2008, 24 (3): 897- 910. |
14 | WEI Hui , JI Shuguan . Periodic solutions of a semilinear variable coefficient wave equation under asymptotic nonresonance conditions[J]. Science China Mathematics, 2023, 66 (1): 79- 90. |
15 | DEHGHAN M , SHOKRI A . A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions[J]. Numerical Algorithms, 2009, 52 (3): 461- 477. |
16 | 蒋长锦. 波动方程辛算法的迭代求解[J]. 计算物理, 2002, 19 (1): 13- 16. |
17 | 张文飞, 李晓江. 双参数波动方程反问题的数值解法[J]. 计算物理, 1997, (2): 2- 8. |
18 | 张大力, 刘家琦, 吴建成. 一维波动方程反问题求解的正则迭代法[J]. 计算物理, 2000, 17 (3): 326- 330. |
19 | 马燕, 王兆清, 唐炳涛. 波动问题的高精度重心有理插值配点法[J]. 山东科学, 2012, 25 (3): 80- 87. |
20 | 王兆清, 纪思源, 徐子康, 等. 不规则区域平面弹性问题的正则区域重心插值配点法[J]. 计算力学学报, 2018, 35 (2): 195- 201. |
21 | TAYLOR W J . Method of lagrangian curvilinear interpolation[J]. Journal of Research of the National Bureau of Standards, 1945, 35, 151- 155. |
22 | BERRUT J P , TREFETHEN L N . Barycentric lagrange interpolation[J]. SIAM Review, 2004, 46 (3): 501- 517. |
23 | LIU Hongyan , HUANG Jin , PAN Yubin , et al. Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equations[J]. Journal of Computational and Applied Mathematics, 2018, 327, 141- 154. |
24 | LI Jin , CHENG Yongling . Linear barycentric rational collocation method for solving heat conduction equation[J]. Numerical Methods for Partial Differential Equations, 2021, 37 (1): 533- 545. |
25 | LI Jin , SANG Yu . Linear barycentric rational collocation method for beam force vibration equation[J]. Shock and Vibration, 2021, 2021, 5584274. |
26 | LI Jin , SU Xiaoning , QU Jinzheng . Linear barycentric rational collocation method for solving telegraph equation[J]. Mathematical Methods in the Applied Sciences, 2021, 44 (14): 11720- 11737. |
[1] | WANG Zhaoqing, QIAN Hang, LI Jin. Regular Domain Iterative Collocation Method in Space-Time Region for Moving Boundary Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 16-24. |
[2] | WANG Leilei, JI Le, MA Wentao. Steady Heat Conduction Analysis of Functionally Graded Materials with Barycentric Lagrange Interpolation Collocation Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 173-181. |
[3] | WANG Zhaoqing, XU Zikang. Mixed Displacement-Pressure Collocation Method for Plane Elastic Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(1): 77-86. |
[4] | LIU Ting, MA Wentao. Barycentric Lagrange Interpolation Collocation Method for Two-dimensional Hyperbolic Telegraph Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(3): 341-348. |
[5] | CHEN Keyang. Seismic Wave Pre-Stack Reverse-Time Migration Imaging Condition Based on One-Way Wave Field Separation and Angle Domain Attenuation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(2): 205-211. |
[6] | WANG Zhaoqing, QI Jiashuai, TANG Bingtao. Numerical Solution of Singular Source Problems with Barycentric Interpolation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(6): 883-888. |
[7] | CHEN Shengchang, MA Zaitian, WU Ru-Shan. Wave Equation Method for Wavefield Propagation Path Tracing [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(2): 186-190. |
[8] | CHEN Shengchang, MA Zaitian, WU Ru-Shan. Wave Equation Migration in Angle Domain [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(2): 211-216. |
[9] | CHEN Sheng-chang, MA Zai-tian, WU Ru-shan. Local Split Step Fourier Propagator for Wave Equation Depth Migration [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 23(5): 604-608. |
[10] | FU Han-qing, WANG Tai-chun. NUMERICAL STUDY OF GUASSIAN SPHERICAL WAVE MODIFIED METHOD OF THE PARAXIAL WAVE EQUATIONS IN THE UNSTABLE CAVITY [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 18(6): 501-506. |
[11] | DU Qi-kui, YU De-hao. DOMAIN DECOMPOSITION METHODS BASED ON NATURAL BOUNDARY REDUCTION FOR WAVE EQUATION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 18(5): 417-422. |
[12] | ZHANG Da-li, WU Jian-Cheng, LIU Jia-qi. REGULARIZING ITERATIVE METHOD FOR SOLVING INVERSE PROBLEM OF ONE-DIMENSIONAL WAVE EQUATION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 17(3): 326-330. |
[13] | Hao Xianjun, Zhu Benren, Zhang Guanquan. THE STABILITY ANALYSIS FOR THE INVERSE PROBLEM OF ONE DIMENSIONAL ACOUSTICS WAVE EQUATIONS [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 15(5): 559-567. |
[14] | Zhang Wenfei, Li Xiaojiang. NUMERICAL SOLUTION OF TWO PARAMETER INVERSE PROBLEM OF WAVE EQUATION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 14(2): 129-130. |
[15] | Wu Jiancheng, ZhangDali, Liu Jiaqi. THE REGULARIZATION METHODS FOR SOLVING INVERSE PROBLEM OF ONE-DIMENSIONAL WAVE EQUATION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 12(3): 415-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.