Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (6): 772-782.DOI: 10.19596/j.cnki.1001-246x.8987
• Research Article • Previous Articles Next Articles
Jiawei GUO1,2(), Han WANG3,4,*(
), Tongxiang GU3
Received:
2024-07-17
Online:
2024-11-25
Published:
2024-12-26
Contact:
Han WANG
Jiawei GUO, Han WANG, Tongxiang GU. Machine Learning Methods for Solving Evolution Equation[J]. Chinese Journal of Computational Physics, 2024, 41(6): 772-782.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8987
Fig.3 Training results of PINN method for solving evolution equation with Adam optimization iteration step of 1 500 (a) point-wise error; (b) point-wise residual
Fig.4 Training process of the standard PINN method for solving convection Eq.(2)(a) loss curves; (b) predictions of neural network at different iteration steps; (c) point-wise errors of neural network predictions at different iteration steps
1 |
DOI |
2 |
DOI |
3 |
DOI |
4 |
DOI |
5 |
DOI |
6 |
DOI |
7 |
DOI |
8 |
|
9 |
DOI |
10 |
DOI |
11 |
DOI |
12 |
DOI |
13 |
DOI |
14 |
DOI |
15 |
DOI |
16 |
DOI |
17 |
DOI |
18 |
DOI |
19 |
DOI |
20 |
DOI |
21 |
DOI |
22 |
|
23 |
|
24 |
DOI |
25 |
DOI |
26 |
DOI |
27 |
DOI |
28 |
DOI |
29 |
|
30 |
|
31 |
KAO T, ZHAO J, ZHANG L. pETNNs: Partial evolutionary tensor neural networks for solving time-dependent partial differential equations[DB/OL]. arXiv, 2024: 2403.06084(2024-03-10). https://arxiv.org/abs/2403.06084.
|
32 |
DOI |
33 |
ZHANG Xuan, HELWIG J, LIN Y, et al. SineNet: Learning temporal dynamics in time-dependent partial differential equations[DB/OL]. The Twelfth International Conference on Learning Representations. Vienna, Austria: ICLR, 2024.
|
34 |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 1. Montreal, Canada: MIT Press, 2015: 802-810.
|
35 |
RAO Chengping, SUN Hao, LIU Yang. Hard encoding of physics for learning spatiotemporal dynamics[DB/OL]. arXiv, 2021: 2105.00557(2021-05-02). https://arxiv.org/abs/2105.00557.
|
36 |
DOI |
37 |
LU Lu, JIN Pengzhan, KARNIADAKIS G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the Universal approximation theorem of operators[J]. arXiv, 2019: 03193(2020-04-15) [2024-07-01]. https://arxiv.org/abs/1910.03193 .
|
38 |
BHATTACHARYA K, HOSSEINI B, KOVACHK N B, et al. Model reduction and neural networks for parametric PDEs[J]. arXiv, 2020: 03180(2021-01-17). https://arxiv.org/abs/2005.03180.
|
39 |
LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Neural operator: Graph kernel network for partial differential equations[J]. arXiv, 2020: 03485(2020-03-07), https://arxiv.org/abs/2003.03485.
|
40 |
CHEN R T Q, RUBANOVA Y, BETTENCOURT J, et al. Neural ordinary differential equations[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc., 2018: 6572-6583.
|
41 |
DOI |
42 |
LI Zongyi, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[DB/OL]. arXiv, 2020: 08895(2020-10-18). https://arxiv.org/abs/2010.08895.
|
43 |
GOSWAMI S, BORA A, YU Y, et al. Physics-informed deep neural operator networks[DB/OL]. arXiv, 2022: 05748(2020-07-08). https://arxiv.org/abs/2207.05748.
|
44 |
DOI |
45 |
KRISHNAPRIYAN A, GHOLAMI A, ZHE Shandian, et al. Characterizing possible failure modes in physics-informed neural networks[C]//Advances in Neural Information Processing Systems 34(NeurIPS 2021). Online: NeurIPS, 2021: 26548-26560.
|
46 |
DOI |
47 |
KATSIARYNA H, ALEXANDER I. Improved training of Physics-Informed neural networks with model ensembleS[DB/OL]. arXiv, 2022: 05108(2023-01-11). https://arxiv.org/pdf/2204.05108.
|
48 |
DOI |
49 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv, 2014: 6980(2017-01-30). https://arxiv.org/abs/1412.6980.
|
50 |
DOI |
51 |
DOI |
52 |
DOI |
53 |
DOI |
54 |
DOI |
55 |
DOI |
56 |
DOI |
57 |
DOI |
58 |
DOI |
59 |
DOI |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.