Chinese Journal of Computational Physics ›› 2025, Vol. 42 ›› Issue (2): 202-210.DOI: 10.19596/j.cnki.1001-246x.8858
• Research Reports • Previous Articles Next Articles
Received:
2023-11-01
Online:
2025-03-25
Published:
2025-04-08
Shuanggui LI, Rong YANG. Coupling Radiation, Ion and Electron Energy Equations with Second-order Time Discretization[J]. Chinese Journal of Computational Physics, 2025, 42(2): 202-210.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8858
Δt | L∞ (Ios_Euler) | Order | L∞ (Os_Euler) | Order |
2.5×10-3 | 6.98×10-3 | 3.51×10-2 | ||
5.0×10-3 | 1.39×10-2 | 0.99 | 6.93×10-2 | 0.98 |
1.0×10-2 | 2.76×10-2 | 0.99 | 0.13 | 0.91 |
2.0×10-2 | 5.40×10-2 | 0.97 | 0.25 | 0.94 |
4.0×10-2 | 0.11 | 1.03 | failure |
Table 1 Numerical converged order of test 1 with splitting method of first-order time accuracy
Δt | L∞ (Ios_Euler) | Order | L∞ (Os_Euler) | Order |
2.5×10-3 | 6.98×10-3 | 3.51×10-2 | ||
5.0×10-3 | 1.39×10-2 | 0.99 | 6.93×10-2 | 0.98 |
1.0×10-2 | 2.76×10-2 | 0.99 | 0.13 | 0.91 |
2.0×10-2 | 5.40×10-2 | 0.97 | 0.25 | 0.94 |
4.0×10-2 | 0.11 | 1.03 | failure |
Δt | L∞ (Ios_Euler) | Order | L∞ (Os_Euler) | Order |
2.5×10-3 | 5.29×10-3 | 3.61×10-2 | ||
5.0×10-3 | 1.05×10-2 | 0.99 | 7.33×10-2 | 1.02 |
1.0×10-2 | 2.10×10-2 | 1.00 | 0.15 | 1.03 |
2.0×10-2 | 4.13×10-2 | 0.98 | failure | |
4.0×10-2 | 8.13×10-2 | 0.98 | failure |
Table 2 Numerical converged order of test 2 with splitting method of first-order time accuracy
Δt | L∞ (Ios_Euler) | Order | L∞ (Os_Euler) | Order |
2.5×10-3 | 5.29×10-3 | 3.61×10-2 | ||
5.0×10-3 | 1.05×10-2 | 0.99 | 7.33×10-2 | 1.02 |
1.0×10-2 | 2.10×10-2 | 1.00 | 0.15 | 1.03 |
2.0×10-2 | 4.13×10-2 | 0.98 | failure | |
4.0×10-2 | 8.13×10-2 | 0.98 | failure |
Δt | L∞ (Ios_Euler) | Order | L∞ (Os-Euler) | Order |
2.5×10-3 | 6.72×10-3 | 3.53×10-2 | ||
5.0×10-3 | 1.34×10-2 | 1.00 | 6.96×10-2 | 0.98 |
1.0×10-2 | 2.66×10-2 | 0.99 | 0.14 | 1.01 |
2.0×10-2 | 5.21×10-2 | 0.97 | 0.25 | 0.84 |
4.0×10-2 | failure | failure |
Table 3 Numerical converged order of test 3 with splitting method of first-order time accuracy
Δt | L∞ (Ios_Euler) | Order | L∞ (Os-Euler) | Order |
2.5×10-3 | 6.72×10-3 | 3.53×10-2 | ||
5.0×10-3 | 1.34×10-2 | 1.00 | 6.96×10-2 | 0.98 |
1.0×10-2 | 2.66×10-2 | 0.99 | 0.14 | 1.01 |
2.0×10-2 | 5.21×10-2 | 0.97 | 0.25 | 0.84 |
4.0×10-2 | failure | failure |
Δt | L∞ (Ios_Euler) | order | L∞ (Os-Euler) | Order |
2.5×10-3 | 2.12×10-3 | 3.32×10-3 | ||
5.0×10-3 | 4.23×10-3 | 1.00 | 6.66×10-2 | 1.00 |
1.0×10-2 | 8.44×10-3 | 1.00 | 1.34×10-2 | 1.01 |
2.0×10-2 | 1.69×10-2 | 1.02 | 2.71×10-2 | 1.02 |
4.0×10-2 | 3.34×10-2 | 0.98 | 5.60×10-2 | 1.05 |
Table 4 Numerical converged order of test 4 with splitting method of first-order time accuracy
Δt | L∞ (Ios_Euler) | order | L∞ (Os-Euler) | Order |
2.5×10-3 | 2.12×10-3 | 3.32×10-3 | ||
5.0×10-3 | 4.23×10-3 | 1.00 | 6.66×10-2 | 1.00 |
1.0×10-2 | 8.44×10-3 | 1.00 | 1.34×10-2 | 1.01 |
2.0×10-2 | 1.69×10-2 | 1.02 | 2.71×10-2 | 1.02 |
4.0×10-2 | 3.34×10-2 | 0.98 | 5.60×10-2 | 1.05 |
Δt | L∞ (Ios_CN) | Order | L∞ (Ios_BDF2) | Order | L∞ (Os_BDF2) | Order |
2.5×10-3 | 5.37×10-6 | 2.14×10-5 | 1.36×10-4 | |||
5.0×10-3 | 2.14×10-5 | 1.99 | 8.54×10-5 | 2.00 | 5.30×10-4 | 1.96 |
1.0×10-2 | 8.54×10-5 | 2.00 | 3.39×10-4 | 1.99 | 2.01×10-3 | 1.92 |
2.0×10-2 | 3.40×10-4 | 1.99 | 1.34×10-3 | 1.98 | 7.35×10-3 | 1.87 |
4.0×10-2 | 1.33×10-3 | 1.97 | 5.16×10-3 | 1.95 | 2.52×10-2 | 1.78 |
Table 5 Numerical converged order of test 1 with splitting method of second-order time accuracy
Δt | L∞ (Ios_CN) | Order | L∞ (Ios_BDF2) | Order | L∞ (Os_BDF2) | Order |
2.5×10-3 | 5.37×10-6 | 2.14×10-5 | 1.36×10-4 | |||
5.0×10-3 | 2.14×10-5 | 1.99 | 8.54×10-5 | 2.00 | 5.30×10-4 | 1.96 |
1.0×10-2 | 8.54×10-5 | 2.00 | 3.39×10-4 | 1.99 | 2.01×10-3 | 1.92 |
2.0×10-2 | 3.40×10-4 | 1.99 | 1.34×10-3 | 1.98 | 7.35×10-3 | 1.87 |
4.0×10-2 | 1.33×10-3 | 1.97 | 5.16×10-3 | 1.95 | 2.52×10-2 | 1.78 |
Δt | L∞ (Ios_CN) | Order | L∞ (Ios_BDF2) | Order | L∞ (Os_BDF2) | Order |
2.5×10-3 | 4.04×10-6 | 1.61×10-5 | 3.49×10-3 | |||
5.0×10-3 | 1.61×10-5 | 1.99 | 6.43×10-5 | 2.00 | 7.91×10-3 | 1.18 |
1.0×10-2 | 6.40×10-5 | 1.99 | 2.53×10-4 | 1.98 | 1.69×10-2 | 1.10 |
2.0×10-2 | 2.56×10-4 | 2.00 | 1.00×10-3 | 1.98 | 3.51×10-3 | 1.05 |
4.0×10-2 | 1.00×10-3 | 1.97 | 3.86×10-3 | 1.95 | 7.14×10-2 | 1.02 |
Table 6 Numerical converged order of test 2 with splitting method of second-order time accuracy
Δt | L∞ (Ios_CN) | Order | L∞ (Ios_BDF2) | Order | L∞ (Os_BDF2) | Order |
2.5×10-3 | 4.04×10-6 | 1.61×10-5 | 3.49×10-3 | |||
5.0×10-3 | 1.61×10-5 | 1.99 | 6.43×10-5 | 2.00 | 7.91×10-3 | 1.18 |
1.0×10-2 | 6.40×10-5 | 1.99 | 2.53×10-4 | 1.98 | 1.69×10-2 | 1.10 |
2.0×10-2 | 2.56×10-4 | 2.00 | 1.00×10-3 | 1.98 | 3.51×10-3 | 1.05 |
4.0×10-2 | 1.00×10-3 | 1.97 | 3.86×10-3 | 1.95 | 7.14×10-2 | 1.02 |
Δt | L∞ (Ios_CN) | Order | L∞ (Ios_BDF2) | Order | L∞ (Os_BDF2) | Order |
2.5×10-3 | 5.37×10-6 | 2.14×10-5 | 1.38×10-4 | |||
5.0×10-3 | 2.14×10-5 | 1.99 | 8.54×10-5 | 2.00 | 5.37×10-4 | 1.96 |
1.0×10-2 | 8.54×10-5 | 2.00 | 3.39×10-4 | 1.99 | 2.04×10-3 | 1.93 |
2.0×10-2 | 3.40×10-4 | 1.99 | 1.34×10-3 | 1.98 | 7.47×10-3 | 1.87 |
4.0×10-2 | 1.33×10-3 | 1.97 | 5.16×10-3 | 1.95 | 2.57×10-2 | 1.78 |
Table 7 Numerical converged order of test 3 with splitting method of second-order time accuracy
Δt | L∞ (Ios_CN) | Order | L∞ (Ios_BDF2) | Order | L∞ (Os_BDF2) | Order |
2.5×10-3 | 5.37×10-6 | 2.14×10-5 | 1.38×10-4 | |||
5.0×10-3 | 2.14×10-5 | 1.99 | 8.54×10-5 | 2.00 | 5.37×10-4 | 1.96 |
1.0×10-2 | 8.54×10-5 | 2.00 | 3.39×10-4 | 1.99 | 2.04×10-3 | 1.93 |
2.0×10-2 | 3.40×10-4 | 1.99 | 1.34×10-3 | 1.98 | 7.47×10-3 | 1.87 |
4.0×10-2 | 1.33×10-3 | 1.97 | 5.16×10-3 | 1.95 | 2.57×10-2 | 1.78 |
Δt | L∞ (Ios_CN) | Order | L∞ (Ios_BDF2) | Order | L∞ (Os_BDF2) | Order |
2.5×10-3 | 4.38×10-7 | 1.76×10-6 | 5.87×10-6 | |||
5.0×10-3 | 1.75×10-6 | 2.00 | 7.01×10-6 | 1.99 | 2.33×10-5 | 1.99 |
1.0×10-2 | 7.01×10-6 | 2.00 | 2.80×10-5 | 2.00 | 9.22×10-5 | 1.98 |
2.0×10-2 | 2.81×10-5 | 2.00 | 1.12×10-4 | 2.00 | 3.60×10-4 | 1.97 |
4.0×10-2 | 0.12×10-4 | 2.09 | 4.46×10-4 | 1.99 | 1.38×10-3 | 1.94 |
Table 8 Numerical converged order of test 4 with splitting method of one-order time accuracy
Δt | L∞ (Ios_CN) | Order | L∞ (Ios_BDF2) | Order | L∞ (Os_BDF2) | Order |
2.5×10-3 | 4.38×10-7 | 1.76×10-6 | 5.87×10-6 | |||
5.0×10-3 | 1.75×10-6 | 2.00 | 7.01×10-6 | 1.99 | 2.33×10-5 | 1.99 |
1.0×10-2 | 7.01×10-6 | 2.00 | 2.80×10-5 | 2.00 | 9.22×10-5 | 1.98 |
2.0×10-2 | 2.81×10-5 | 2.00 | 1.12×10-4 | 2.00 | 3.60×10-4 | 1.97 |
4.0×10-2 | 0.12×10-4 | 2.09 | 4.46×10-4 | 1.99 | 1.38×10-3 | 1.94 |
Δt | Num_Iters (Ios_CN) | Num_Iters (Ios_Euler) | Num_Iters(Ios_BDF2) |
2.5×10-3 | 22 139 | 21 388 | 21 002 |
5.0×10-3 | 11 684 | 11 523 | 11 254 |
1.0×10-2 | 6 166 | 6 127 | 5 970 |
2.0×10-2 | 3 297 | 3 455 | 3 264 |
4.0×10-2 | 1 949 | 1 903 | 1 825 |
Table 9 Total nonlinear iterations of test 4 with different splitting method
Δt | Num_Iters (Ios_CN) | Num_Iters (Ios_Euler) | Num_Iters(Ios_BDF2) |
2.5×10-3 | 22 139 | 21 388 | 21 002 |
5.0×10-3 | 11 684 | 11 523 | 11 254 |
1.0×10-2 | 6 166 | 6 127 | 5 970 |
2.0×10-2 | 3 297 | 3 455 | 3 264 |
4.0×10-2 | 1 949 | 1 903 | 1 825 |
1 |
常铁强, 张钧, 张家泰, 等. 激光等离子体相互作用与激光聚变[M]. 长沙: 湖南科学技术出版社, 1991.
|
2 |
DOI |
3 |
DOI |
4 |
李纪伟, 王立锋, 李志远, 等. 混合驱动下高熵高内爆速度中心点火靶设计[J]. 计算物理, 2023, 40(2): 181- 188.
DOI |
5 |
|
6 |
|
7 |
|
8 |
|
9 |
杜书华, 张数发, 王元璋, 等. 输运问题的计算机模拟[M]. 长沙: 湖南科学技术出版社, 1989.
|
10 |
|
11 |
|
12 |
DOI |
13 |
DOI |
14 |
DOI |
15 |
DOI |
16 |
DOI |
17 |
DOI |
18 |
DOI |
19 |
DOI |
20 |
DOI |
21 |
李双贵, 杨容, 杭旭登. 多群辐射输运计算的输运综合加速方法[J]. 计算物理, 2014, 31(5): 505- 513.
DOI |
22 |
李若, 李蔚明, 宋鹏. 辐射输运与电子能量强耦合源项的一种高效计算方法[J]. 计算物理, 2017, 34(3): 253- 260.
DOI |
23 |
DOI |
24 |
DOI |
25 |
冯庭桂, 赖东显, 许琰, 等. X光辐射输运计算的一种算子分裂方法[J]. 中国工程物理研究院科技年报: 内部通讯, 1998, 176- 187.
|
26 |
李双贵, 冯庭桂. 辐射输运菱形差分SN方程的扩散综合加速方法[J]. 计算物理, 2008, 25(1): 1- 6.
DOI |
27 |
李双贵, 杭旭登, 李敬宏. 辐射与物质强耦合问题的二维输运数值模拟[J]. 计算物理, 2009, 26(2): 247- 253.
DOI |
28 |
李双贵, 杭旭登, 杨容, 等. LARED集成程序辐射输运模拟的性能优化[J]. 计算物理, 2017, 34(3): 320- 326.
DOI |
29 |
翟传磊, 李双贵, 勇珩, 等. 靶丸变形实验的多群扩散整体数值模拟[J]. 强激光与粒子束, 2013, 25(5): 1157- 1160.
|
30 |
李双贵, 翟传磊, 杭旭登, 等. 激光腔靶耦合二维辐射输运数值模拟[J]. 强激光与粒子束, 2014, 26(8): 082002.
DOI |
31 |
宋鹏, 翟传磊, 李双贵, 等. 激光间接驱动惯性约束聚变二维总体程序——LARED集成程序[J]. 强激光与粒子束, 2015, 27(3): 032007.
DOI |
32 |
DOI |
[1] | WU Ming, ZHOU Ruirui, LI Benwen. Collocation Spectral Method for Radiative Heat Transfer in One-dimensional Cylindrical Medium with Graded Index [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 320-326. |
[2] | LI Ruo, LI Weiming, SONG Peng. Efficient Algorithm for Stiff Source Terms in Strongly Coupling Radiative Transfer and Electron Energy Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(3): 253-260. |
[3] | LI Shuanggui, HANG Xudeng, YANG Rong, SONG Peng, ZHAI Chuanlei, QI Jin. Performance Optimization of LARED-Integration Code in Radiative Transfer Calculations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(3): 320-326. |
[4] | LI Shuanggui, YANG Rong, HANG Xudeng. Transport Synthetic Acceleration Methods for Multi-group Radiative Transfer Calculations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(5): 505-513. |
[5] | YAN Kai, LI Ruo, TIAN Zhou, GUO Yonghui, CAO Yuan. An Operator Splitting Method for Numerical Simulation of Strong Explosion Fireball [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(3): 379-386. |
[6] | LUO Jianfeng, ZHANG Hailiang, YIN Hongwei, WANG Xiaofeng. Temperature Distribution Within a Hollow Cylinder in Outer Space: A Study with View Factors to Trace Reflected Energy [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(3): 417-425. |
[7] | AN Wei, ZHU Tong. Finite Element Method with Diffusion Synthetic Acceleration for Short Pulsed Laser in Turbid Media [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(1): 121-126. |
[8] | LI Shuanggui, HANG Xudeng, LI Jinghong. Two-dimensional Simulation of Strong-coupled Radiative Transfer [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(2): 247-253. |
[9] | CHAI Chenggang. P3 Approximation in Spherical Harmonics Method for Radiative Transfer Equation and Application in Biological Tissues [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(1): 101-106. |
[10] | LI Shuanggui, FENG Tinggui. Diffusion-synthetic Acceleration Method for Diamond-differenced Discrete-ordinates Radiative Transfer Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(1): 1-6. |
[11] | FENG Ting-gui. A Numerical Method for Solving Radiation Transport Equation on Lagrangian Mesh [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 21(5): 427-431. |
[12] | Li Yanwen, Feng Tinggui, Lai Dongxian. A VARIABLE MULTIGROUP METHOD FOR CALCULATION IN NON-EQUILIBRIUM RADIATIVE TRANSFER [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 11(3): 328-336. |
[13] | Jin Yaqiu, Min Hao. RADIATIVE TRANSFER OF DENSELY RANDOM SCATTERERS AND NUMERICAL CHARACTERISTICS OF SNOW IN REMOTE SENSING [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 9(S2): 793-796. |
[14] | Ding Peizhu, Mu Yingkui. A DIFFERENCE QUOTIENT-NUMERICAL INTEGRATION METHOD FOR SOLVING RADIATIVE TRANSFER PROBLEMS [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 9(S2): 817-821. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.