导航切换
CJCP
Home
About Journal
About Journal
Information
Aims & Scopes
Journal History
Editorial Board
Editorial Board
Successive Editorial Board
Authors
Guidelines for Authors
Authors Login
Download
Online First
Reviewers
Peer Review
Editor Work
Editor-in-chief
Guidelines for Reviewers
FAQ
FAQ
Contacts us
中文
Journals
Publication Years
Keywords
Search within results
(((LIU Minghou[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Numerical Simulation of Surface Roughness Effect in Large Height-Width Ratio Mini-channel Flows
LIU Dong, JIANG Bin, LIU Minghou
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2013, 30 (
5
): 759-765.
Abstract
(
277
)
PDF
(2750KB)(
1094
)
Knowledge map
A PML model based on fixed surface roughness is used in simulation of surface roughness effect on flow in mini-channels. Compared with 3-D simulation, results of pressure drop agree well. With PML model and 3-D model we simulate different flow rates and roughness, it shows that surface roughness results in speed linear flow substrate. Pressure drop and relative roughness follow a secondary power relation as
Re
number is fixed. Pressure drop increased linearly with
Re
number as roughness elements is equal.
Related Articles
|
Metrics
Select
Simulation of Multiphase Flows in Microscale Hemodialysis
XU Kan, LIU Minghou, LIU Dong, CHEN Yiliang
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2009, 26 (
1
): 49-56.
Abstract
(
314
)
PDF
(426KB)(
1215
)
Knowledge map
A non-Newtonian shear-thinning model is shown and applied to multiphase flow simulation in 3-D micro-tubes.The model is validated by comparing simulation and experimental results.Velocity simulated agrees well with experimental data and shows F-L effect in microscale hemodynamics.To investigate non-membrane hemodialysis,we simulate hemodialysis in a T-shape mixer.Simulation indicates that components with larger mass diffusion coefficient pervade sufficiently and they can be separated from other components.
Related Articles
|
Metrics
Select
PDF Simulation of Bluff-body Stabilized Turbulent Non-premixed Flame
HUANG Qing, ZHU Minming, YE Taohong, LIU Minghou, CHEN Yiliang, DONG Gang
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2008, 25 (
6
): 733-743.
Abstract
(
253
)
PDF
(600KB)(
1179
)
Knowledge map
A joint-scalar probability density function (PDF) model is used to simulate bluff-body stabilized turbulent non-premixed Sydney flames HM1. In Situ Adaptive Tabulation (ISAT) algorithm is used to accelerate chemistry calculations. A modified LRR-IP Reynolds stress model is applied to obtain mean flow and turbulent mixing fields. We consider three chemical kinetical schemes for methane chemistry. Simulation results are compared with experimental data. It shows that the model and mechanisms predict flow field, scalar field and local extinction well. C2 chemistry has minor effect on flame HM1.
Related Articles
|
Metrics
Select
Continuum-based Model and Its Validity for Micro-nozzle Flows
ZHANG Genxuan, WANG Lu, ZHANG Xianfeng, LIU Minghou
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2007, 24 (
5
): 598-604.
Abstract
(
223
)
PDF
(328KB)(
1140
)
Knowledge map
Two-dimensional and three-dimensional simulations are performed to investigate supersonic cold gas flows in micro-nozzles using continuum-based no-slip and slip models,respectively.The validity of continuum-based models is examined by DSMC method.The study focuses on low Reynolds number effects,three-dimensional effect and propulsive performance of the micro-nozzle flow.It shows that compared to the prediction of propulsive performance,the simulation of local flow fields needs a more stringent model.The no slip N-S equations are able to predict propulsive performance of micro-nozzles with
Kn
< 0.03.Reynolds number is a key parameter in governing low Reynolds number effect and propulsive performance.The strong viscous losses can be mitigated and better propulsive performance can be achieved at higher chamber pressures.The micro-nozzle with the ratio of etch depth to throat width more than 13 has a good 2D characteristic as
Re
> 1000.
Related Articles
|
Metrics