Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Topological Chern Numbers in a Two-dimensional Triangular-Lattice
YU Hualing, GAO Yu, ZHAI Zhangyin
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS    2018, 35 (5): 606-612.   DOI: 10.19596/j.cnki.1001-246x.7696
Abstract621)   HTML1)    PDF (7847KB)(1353)      
We investigate numerically topological Chern number in a two-dimensional triangular-lattice with three bands, considering tight-binding Hamiltonian. Energy spectrum is obtained with Fourier transform and Hall conductance is calculated using Kubo formula. It is found that Chern number of energy band is modulated by next nearest neighbor hopping integral t'.Three bands own Chern numbers in sequence, {-4, 5,-1} at t'=1/2, {2,-4, 2} at t'=-1/2 and {2,-1,-1} at t'=±1/4, which leads to Hall plateaus in sequence, {-4, 1}e2/h, {2,-2}e2/h and {2, 1}e2/h, respectively. Peaks of density of states (DOS) are located at jumps of Hall conductance. Energy gap (DOS=0) gives width of corresponding Hall plateau. If energy band becomes more flat, corresponding peak of DOS becomes higher and sharper, and jump of Hall conductance becomes steeper.
Reference | Related Articles | Metrics
Mathematical Simulation on Induced Polarization of Reservoir Rock in Time Domain
GUAN Jiteng, YU Hua, WANG Qian, FAN Yehuo, CHENG Yuanyuan
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS    2012, 29 (3): 354-360.  
Abstract344)      PDF (375KB)(1090)      
Based on a microscope capillary model,a mathematical model for induced polarization of reservoir rock is obtained.Influences of concentration difference polarization and electric double-layer deformation on induced polarizability are studied numerically.It shows that induced polarization is governed by ion concentration difference polarization in capillary.Electric double-layer deformation has greater influence on total polarizability.Speed of charging and discharging in induced polarization depends mainly on cation exchange capacity and pore structure of rock.
Related Articles | Metrics
Difference Scheme for Diffusion Equation on Voronoi Meshes
YU Huaping, WANG Shuanghu
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS    2007, 24 (6): 631-636.  
Abstract221)      PDF (237KB)(1163)      
A difference scheme for diffusion equation on Voronoi meshes is constructed using finite volume method.The diffusion discretization scheme is simpler on Voronoi meshes than on quadrilateral meshes.It introduce no cell-node unknown and improves accuracy of the discrete calculation of cell-edge flux as well as accuracy of difference scheme.The diffusion calculation on Voronoi meshes can be coupled with cell-centered hydrodynamics calculations.Computation examples demonstrate that the accuracy on Voronoi meshes is higher than that on quadrilateral meshes and Voronoi meshes adapt well to distortion.
Related Articles | Metrics
A Jet Symplectic Algorithm for Euler-Lagrange Systems
YU Hua-ping, WANG Shuang-hu
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS    2005, 22 (6): 23-30.  
Abstract269)      PDF (360KB)(1179)      
A jet symplectic algorithm for Euler-Lagrange systems is studied.It is shown that the discrete Euler-Lagrange (DEL) equation,which was given by the second author in 1998,has fundamental geometric structures that preserve along solutions obtained directly from the variatonal principle.It is shown that these difference schemes are jet symplectic and the Nother's theorem exists by which we give the definition of a discrete version,the momentum map.A numerical example in jet symplectic difference scheme is given.A comparison with other discretization schemes was made.
Related Articles | Metrics
The Construction of Jet Symplectic Difference Scheme for Hamiltonian Systems via Generating Functions
YU Hua-ping, WANG Shuang-hu
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS    2005, 22 (3): 206-216.  
Abstract248)      PDF (476KB)(1209)      
A method preserving structures of the Hamiltonian systems is considered. On the basis of the jet symplectic difference scheme for canonical Hamiltonians the jet symplectic difference scheme for Hamiltonian systems in general symplectic structure with variable coefficientsic is defined. According to the general approach of the generating function method for the symplectic difference schemes a relation between the general symplectic structure and the generating functions is found. The jet symplectic difference schemes for classical Hamiltonian systems are constructed in terms of Hamilton-Jacobi equation.
Related Articles | Metrics
Computing fractal dimension and the kolmogorov entropy from chaotic time series
Zhao Guibing, Shi Yanfu, Duan Wenfeng, Yu Huarui
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS    1999, 16 (3): 309-315.  
Abstract516)      PDF (279KB)(2428)      
On the basis of the G-P algorithm it proposes an optimal algorithm for computing simultaneously the correlation dimension and the Kolmogorov entropy from time series.The correlation dimension obtained from this method is optimal and the stable estimation of the Kolmogorov entropy is also obtained.The applicability of the method is illustrated with two examples,viz.,the Lorenz attractor and Rossler attractor.
Related Articles | Metrics
MODEL STUDY OF THE EFFECTS OF THE FITTING PARAMETER △E0 IN THE EXAFS DATA ANALYSIS
Zheng Yu Hua, Zhong-yi
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS    1987, 4 (2): 215-218.  
Abstract249)      PDF (256KB)(890)      
In this paper, the effects of the fitting parameter E0 on the structural determinations in the EXAFS structural study of amorphous alloys have been discussed through the model calculations. The results show that the cancellation of the fitting parameter △E0 can increase the reliability of the data analysis in the EXAFS structural study of amorphous alloys.
Related Articles | Metrics